基本情况

王子谦,理学博士、教授、博士生导师。2007年本科毕业于南京信息工程大学大气科学专业,2008年进入中国科学院大气物理研究所研究生学习,于2014年获气象学博士学位。研究兴趣主要包括青藏高原区域气候变化及其全球效应、热带海气相互作用与季风变率、全球气候变化与极端气象水文灾害,在相关研究领域已发表学术论文70余篇,合作出版专著2部。近年来先后荣获中山大学优秀博士后(2016)、第十一届青藏高原青年科技奖(2018)、广州市珠江科技新星(2019)、广东省杰出青年基金(2023)等。

 

欢迎对团队研究方向感兴趣的本科生(研究性学习及毕业论文)、研究生加入!

 

联系方式: wangziq5@mail.sysu.edu.cn

办公地址:珠海市唐家湾中山大学珠海校区海琴2号A240

 

工作经历

2025.03               中山大学大气科学学院,教授

2019.052025.03  中山大学大气科学学院,副教授

2017.032019.04  中山大学大气科学学院,特聘研究员

2016.092016.12  香港中文大学IEES,访问学者

2016.032016.06  香港中文大学IEES,访问学者

2015.022017.02  中山大学大气科学学院,博士后、助理研究员

2014.072015.01  中国科学院南海海洋研究所,助理研究员

 

学术兼职

Journal of ClimateAssociate Editor;《高原气象》期刊青年编委;《Asia-Pacific Journal of Atmospheric Science》期刊客座编辑;中国青藏高原研究会理事会理事;广东省气象学会气候和地球系统动力学专业委员会委员;《第四次气候变化国家评估报告》贡献作者;担任JCLI, CD, GRL, JGR, IJOC, JMR, TAC, ASL, AOSL, APAS, Atmos Res, Sci Rep, Climatic Change,大气科学,地球物理学报,大气科学学报,气象科学,近20个国内外学术期刊的专业评审员

 

讲授课程

《全球季风》、《热带气象学》

 

科研项目

2020.012023.12  国家自然科学基金面上项目:青藏高原热力强迫和热带海温异常对中国南方春雨的协同影响(主持)

2020.012023.12  国家重点研发计划:“重大自然灾害监测预警与防范”专项“大湾区极端天气气候事件的识别与变化特

                              征”课题(研究骨干;王东海教授主持

2019.042021.03  广州市科技计划项目“珠江科技新星”专项:全球变暖背景下青藏高原热源变化及其对全球气候的反馈

                             作用(主持)

2017.012019.12  国家自然科学基金青年项目:青藏高原热力强迫与印度洋的相互作用及其对亚洲夏季风的影响(主持)

2016.082017.02  中国博士后科学基金面上项目一等资助:青藏和伊朗高原大地形加热的气候效应差异及其相互影响

                            (主持)

2015.082018.07  广东省自然科学基金博士启动项目:海气耦合对青藏高原热力强迫影响亚洲夏季风的调控作用(主持)

2015.012016.12  中科院大气物理研究所LASG国家重点实验室开放基金:基于WRF模式的青藏高原大地形加热对亚洲

                             夏季风的模拟研究(主持)

2017.052020.04  广州市产学研协同创新重大专项:气候变化与城市化背景下广州极端高温事件特征和影响(第一参

                             与人;与广州市气象局合作

2017.012020.12  国家自然科学基金重大研究计划重点项目:青藏高原与西亚、北非和南欧气候变异的相互影响(研

                             究骨干;杨崧教授主持

2016.092019.08  国家自然科学基金国际(地区)合作与交流项目:中国南方和东南亚地区降水的季节内至季节变化及其

                             预测研究(研究骨干;杨崧教授主持

 

发表论著(*为通讯作者)

  • Ke, M., Z. Wang*, S. Yang, W. Pan, and W. Chen, 2025: Formation mechanism for persistent heavy rainfall in southern China during the onset of South China Sea summer monsoon. Journal of Climate, doi: 10.1175/JCLI-D-24-0536.1, in press. 
  • Luo, H., D. Chen, S. Yang, W. Yu, and Z. Wang*, 2025: Calibrating the simulated summer precipitation trend over the southern slope of the Tibetan Plateau in CMIP6 models using a sub-selection method. Advances in Climate Change Research, 16, 35–43. https://doi.org/10.1016/j.accre.2025.01.005.
  • Xiao, Z., Z. Wang*, X. Luo, and C. Yao, 2024: Ensemble seasonal forecasting of typhoon frequency over the western North Pacific using multiple machine learning algorithms. Environmental Research Letters, 19, 104007.
  • Zeng, Z., S. Yang, Z. Wang*, H. Luo, and K. Deng, 2024: Weakened subtropical westerlies and their deflection by the Tibetan Plateau contribute to drying southeastern China in early spring. Geophysical Research Letters, 51, e2024GL109795.
  • Wang, Z.*, J. Xu, Z. Zeng, M. Ke, and X. Feng, 2024: Understanding the 2022 extreme Dragon‑boat rainfall in South China from the combined land and oceanic forcing. Asia-Pacifc Journal of Atmospheric Sciences, 60, 435–448. (Invited)
  • Luo, H., Z. Wang*, C. He, D. Chen, and S. Yang*, 2024: Future changes in South Asian summer monsoon circulation under global warming: role of the Tibetan Plateau latent heating. npj Climate and Atmospheric Science, 7, 103.
  • Yang, S., and Z. Wang*, 2023: Air-sea interactions amplify the global climate effects of the Tibetan Plateau. Science Bulletin, 68, 2689–2690. https://doi.org/10.1016/j.scib.2023.09.047
  • Guo, R., W. Pan, M. Ke, W. Wei, and Z. Wang*, 2023: Diversity on the interannual variations of spring monthly precipitation in southern China and the associated tropical sea surface temperature anomalies. Journal of Tropical Meteorology, 29, 337–346.
  • Luo, H., Z. Wang*, H. Wu, Z. Zeng, and W. Yu, 2023: Weakened relationship between the Tibetan Plateau heat source and the western North Pacific anomalous anticyclone in recent summers. Journal of Climate, 36, 5027–5040. https://doi.org/10.1175/JCLI-D-22-0727.1. 
  • Wang, Z.*, H. Luo, and S. Yang, 2023: Different mechanisms for the extremely hot central-eastern China in July–August 2022 from a Eurasian large-scale circulation perspective. Environmental Research Letters, 18, 024023. https://doi.org/10.1088/1748-9326/acb3e5
  • Yu, W., Y. Liu*, T. Zhang, S. Yang, G. Wu, D. Chen, Z. Wang*, X. Yang, L. Xu, and B. He, 2023: Potential impact of winter–spring North Atlantic tripole SSTAs on the following autumn–winter El Niño–Southern Oscillation: bridging role of the Tibetan Plateau. Geophysical Research Letters, 50, e2022GL100663.
  • Xiao, Z., and Z. Wang*, 2023: Atmospheric heat source/sink response to the snow depth over the Tibetan plateau in melting season: A modeling study. Atmospheric Science Letters, 24, e1133. https://doi.org/10.1002/asl.1133 
  • Ke, M., Z. Wang*, W. Pan, H. Luo, S. Yang, and R. Guo, 2022: Extremely strong western pacific subtropical high in May 2021 following a La Niña event: Role of the persistent convective forcing over the Indian Ocean. Asia-Pacific Journal of Atmospheric Sciences, https://doi.org/10.1007/s13143-022-00300-6.
  • Cai, F., S. Yang, Z. Wang*, J. Chen, J. Wang, and W. Chen, 2022: Triggering effect of an unusual northwestward‑moving tropical cyclone over the Bay of Bengal on the extremely early Indian summer monsoon onset. Climate Dynamics, https://doi.org/10.1007/s00382-022-06603-8 
  • Luo, H., Z. Wang*, S. Yang, and W. Hua, 2022: Revisiting the impact of Asian large-scale orography on the summer precipitation in Northwest China and surrounding arid and semi-arid regions. Climate Dynamics, 60, 33–46. https://doi.org/10.1007/s00382-022-06301-5
  • Wang, Z.*, S. Yang, H. Luo, and J. Li, 2022: Drying tendency over the southern slope of the Tibetan Plateau in recent decades: role of a CGT‑like atmospheric change. Climate Dynamics, 59, 2801–2813. https://doi.org/10.1007/s00382-022-06262-9
  • Chen, J., C.-Y. Tam, Z. Wang, K. Cheung, Y. Li, N.-C. Lau, and D.-S. Lau, 2022: Future thermodynamic impacts of global warming on landfalling typhoons and their induced storm surges to the Pearl River Delta region as inferred from high-resolution regional models. Journal of Climate, 35, 4905–4926. https://doi.org/10.1175/JCLI-D-21-0436.1
  • Tan, Y., S. Yang, F. Zwiers, Z. Wang, and Q. Sun, 2022: Moisture budget analysis of extreme precipitation associated with different types of atmospheric rivers over western North America. Climate Dynamics, 58, 793–809.
  • Wang, Z., Z. Xiao, C.-Y. Tam, W. Pan, J. Chen, C. Hu, C. Ren, W. Wei, and S. Yang, 2021: The projected effects of urbanization and climate change on summer thermal environment in Guangdong-Hong Kong-Macao Greater Bay Area of China. Urban Climate, 37, 100866. https://doi.org/10.1016/j.uclim.2021.100866 
  • Cai, F., S. Yang, Z. Wang*, and W. Hua, 2021: Quantitative study of the interannual variability of South Asian summer monsoon rainfall regulated by SST. International Journal of Climatology, 41, 34573468, doi: 10.1002/joc.7029.
  • Hu, C., Y. Fung, C.-Y. Tam, and Z. Wang, 2021: Urbanization impacts on Pearl River Delta extreme rainfall sensitivity to land cover change versus anthropogenic heat. Earth and Space Science, 8, e2020EA001536. doi: 10.1029/2020EA001536.
  • Fung, K., C.-Y. Tam, T. Lee and Z. Wang, 2021: Comparing the influence of global warming and urban anthropogenic heat on extreme precipitation in urbanized Pearl River Delta area based on dynamical downscaling. Journal of Geophysical Research: Atmospheres, 126, e2021JD035047. doi: 10.1029/2021JD03504.
  • Chen, J., C.-Y Tam, K. Cheung, Z. Wang, H. Murakami, N.-G. Lau, T. Garner, Z. Xiao, C.-W. Choy, and P. Wang, 2021: Changing impacts of tropical cyclones on East and Southeast Asian inland regions in the past and a globally warmed future climate. Frontiers in Earth Science, 9, 769005. doi: 10.3389/feart.2021.769005.
  • Xiao, Z., Z. Wang*, M. Huang, X. Luo, Y. Liang and Z. Lin, 2020: Urbanization in an underdeveloped city‒Nanning, China and its impact on a heavy rainfall event in July. Earth and Space Science, 7, e2019EA000991, doi: 10.1029/2019EA000991.
  • Chen, J., Z. Wang*,  C.-Y. Tam*, N.-C. Lau, D.-S. Lau, and H.-Y. Mok, 2020: Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global warming method. Scientific Reports, 10, 1965, doi: 10.1038/s41598-020-58824-8.  
  • Sun, C., Z. Wang*, and S. Yang, 2019: Interannual variability of winter precipitation over the western side of Tibetan Plateau and its impact factors. Chinese Journal of Atmospheric Sciences (in Chinese), 43 (2): 350–360. (中文版: 孙畅, 王子谦*, 杨崧, 2019: 青藏高原西侧地区冬季降水的年际变率及其影响因子. 大气科学, 43(2), 350–360, doi:10.3878/j.issn.1006-9895.1805.17305.)
  • Wang, Z.*, S. Yang*, A. Duan, W. Hua, K. Ullah, and S. Liu, 2019: Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan. Climate Dynamics, 52, 6121–6130, doi:10.1007/s00382-018-4507-6.
  • Wang, Z.*, A. Duan, and S. Yang, 2019: Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models. Climate Dynamics, 52, 1685–1694, doi:10.1007/s00382-018-4218-z.
  • He, B., Y. Liu, G. Wu, Z. Wang, and Q. Bao, 2019: The role of air-sea interactions in regulating the thermal effect of the Tibetan-Iranian Plateau on the Asian summer monsoon. Climate Dynamics, 52, 4227–4254, doi:10.1007/s00382-018-4377-y.
  • He, C., Z. Wang, T. Zhou, and T. Li, 2019: Enhanced East Asian summer monsoon circulation under a warmer climate: Is it driven by land-sea thermal contrast or Tibetan Plateau? Journal of Climate, 32, 33733388, doi:10.1175/JCLI-D-18-0427.1.
  • Li, J., W.-C. Wang, J. Mao, Z. Wang, G. Zeng, and G. Chen, 2019: Springtime cloud macro-physical properties, shortwave radiative forcing and associated circulation over southeastern China. Journal of Climate, 32, 30693087, doi:10.1175/JCLI-D-18-0385.1.
  • Xiao, Z., A. Duan, and Z. Wang, 2019: Atmospheric heat sinks over the western Tibetan Plateau associated with snow depth in late spring. International Journal of Climatology, 39, 5170–5180, doi: 10.1002/joc.6133.
  • Lu, M., B. Huang, Z. Li, S. Yang, and Z. Wang, 2019: Role of Atlantic air-sea coupling in the effect of the Tibetan Plateau heating on the upstream climate over Afro-Eurasia-Atlantic regions. Climate Dynamics, 53, 509519, doi:10.1007/s00382-018-459 5-3.
  • Li, G., Y. Jian, S. Yang, Y. Du, Z. Wang, Z. Li, W. Zhuang, W. Jiang, G. Huang, 2019: Effect of excessive equatorial Pacific cold tongue bias on the El Niño-Northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Climate Dynamics, 52, 6195–6212, doi:10.1007/s00382-018-4504-9.
  • Xiao, Z., Z. Wang*, W. Pan, Y. Wang, and S. Yang, 2019: Sensitivity of extreme temperature events to urbanization in the Pearl River Delta region. Asia-Pacific Journal of Atmospheric Sciences, 55, 373–386, doi: 10.1007/s13143-018-0094-z.
  • Wang, Z., S. Yang, N.-C. Lau, and A. Duan, 2018: Teleconnection between summer NAO and East China rainfall variations: a bridge effect of the Tibetan Plateau. Journal of Climate, 31, 6433–6444, doi:10.1175/JCLI-D-17-0413.1.
  • Wang, Z., G. Li, and S. Yang, 2018: Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble. Climate Dynamics, 51, 755–768, doi: 10.1007/s00382-017-3953-x.
  • Deng. K, S. Yang, M. Ting, A. Lin, and Z. Wang, 2018: An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophysical Research Letters, 45, 11361–11369, doi:10.1029/2018GL079836.
  • Lu, M., S. Yang, Z. Li, B. He, S. He, and Z. Wang, 2018: Possible effect of the Tibetan Plateau on the “upstream” climate over West Asia, North Africa, South Europe and the North Atlantic. Climate Dynamics, 51, 1485–1498, doi: 10.1007/s00382-017-3966-5.
  • Qian, Y., S. Peng, S. Liu, S. Chen, Z. Wang, Q. Wan, and Z. Chen, 2018: Assessing the influence of assimilating radar-observed radial winds on the simulation of a tropical cyclone. Natural Hazards, 94, 279–298, doi:10.1007/s11069-018-3388-7.
  • Ma, J., S. Yang, and Z. Wang, 2018: Influence of spring soil moisture anomaly in the Indo-China Peninsula on the establishment and development of Asian tropical summer monsoon. Meteorological and Environmental Sciences, 41(1), 19–30. (中文版: 马珺玢, 杨崧, 王子谦, 2018: 中南半岛春季土壤湿度异常对亚洲热带夏季风建立和发展的影响. 气象与环境科学, 41(1), 19–30.)
  • Duan, A., Z. Xiao, and Z. Wang, 2018: Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon: A review. Chinese Journal of Atmospheric Sciences (in Chinese), 42 (4): 755-766. (中文版: 段安民, 肖志祥, 王子谦, 2018青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展. 大气科学, 42(4), 755–766.) (IAP所庆90周年专刊)
  • Wu, G., Y. Liu, B. He, Q. Bao, and Z. Wang, 2018: Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon. Chinese Journal of Atmospheric Sciences (in Chinese), 42 (3): 488–504. (中文版: 吴国雄, 刘屹岷, 何编, 包庆, 王子谦, 2018: 青藏高原感热气泵影响亚洲夏季风的机制. 大气科学, 42(3), 488–504.) (IAP所庆90周年专刊)
  • Wang, Z.*, A. Duan, S. Yang, and K. Ullah, 2017: Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122, 614–630, doi: 10.1002/2016JD025515.
  • Fu, Q., X. Liang, Q. Zhang, Z. Wang, and A. Duan, 2017: Possible contribution of a tropical cyclone to short-term climate anomalies in East Asia via snow cover on the Tibetan Plateau. Journal of Tropical Meteorology, 23(4), 462–470.
  • Adnan, S., K. Ullah, S. Gao, A. Khosa, and Z. Wang, 2017: Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. International Journal of Climatology, 37, 529–543, doi: 10.1002/joc.5019.
  • Liu, Y., Z. Wang, H. Zhuo, and G. Wu, 2017: Two types of summertime heating over the Asian large-scale orography and excitation of potential vorticity forcing II. sensible heating over the Tibetan-Iranian Plateau. Science China Earth Sciences, 60, 733–744, doi: 10.1007/s11430-016-9016-3. ("Research Highlights" in National Science Review)
  • Wu, G., H. Zhuo, Z. Wang*, and Y. Liu*, 2016: Two types of summertime heating over the Asian large-scale orography and excitation of potential vorticity forcing I. over Tibetan Plateau. Science China Earth Sciences, 59, 1996–2008, doi: 10.1007/s11430-016-5328-2. ("Research Highlights" in National Science Review)
  • Wang, Z.*, A. Duan, M. Li, and B. He, 2016: Influences of thermal forcing over the slope/platform of the Tibetan Plateau on Asian summer monsoon: Numerical studies with WRF model. Chinese Journal of Geophysics, 59(5), 474–487.
  • Wang, Z., A. Duan, G. Wu, and S. Yang, 2016: Mechanism for occurrence of precipitation over the southern slope of the Tibetan Plateau without local surface heating. International Journal of Climatology, 36, 4164–4171, doi: 10.1002/joc.4609.
  • Tian, S., A. Duan, Z. Wang, and Y. Gong, 2015: Interaction of surface heating, the Tibetan Plateau vortex, and a convective system: A case study. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (1): 125−136. (中文版: 田珊儒, 段安民, 王子谦, 巩远发, 2015: 地面加热与高原低涡和对流系统相互作用的一次个例研究. 大气科学, 39(1), 125–136.)
  • Wang, Z., A. Duan, and G. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model. Climate Dynamics, 42, 2885–2898, doi: 10.1007/s00382-013-1800-2.
  • Wang, Z., A. Duan, and G. Wu, 2014: Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon. Science China Earth Sciences, 57(7), 1480–1493, dio: 10.1007/s11430-013-4801-4.
  • Wang, Z., and A. Duan, 2012: A new ocean mixed-layer model coupled into WRF. Atmospheric and Oceanic Science Letters, 5, 170–175.
  • Wang, Z., A. Duan, Y. Zheng, K. Liu, D. Liang, and G. Ma, 2012: Simulative study of typhoon Chanchu (2006) using the mesoscale coupled air-sea model GRAPES_OMLM. Acta Meteorological Sinica70(2), 261–274. (中文版: 王子谦, 段安民, 郑永骏, 刘琨, 梁旭东, 马光, 2012: 中尺度海气耦合模式GRAPES_OMLM对台风珍珠的模拟研究. 气象学报, 70(2), 261–274.)
  • Wang, Z., W. Zhu, and A. Duan, 2010: A case study of snowstrom in Tibetan Plateau Induced by Bay of Bengal strom: Based on the theory of slantwise vorticity development. Plateau Meteorology, 29(3), 703–711. (中文版: 王子谦, 朱伟军, 段安民, 2010: 孟湾风暴影响高原暴雪的个例分析: 基于倾斜涡度发展的研究. 高原气象, 29(3), 703–711.)