郑菲,博士,副教授,硕士生导师
主要从事气候动力学、气候预测、气候变化与极端事件方面的研究。近年来发表论文30余篇。任国际理论物理中心(ICTP)青年协联成员、国际气象学与大气科学协会(IAMAS)ECS青年委员、国际气象学与大气科学协会(IAMAS)中国委员会委员、Future Earth Global Secretariat Hub (China) Science Officer。
联系方式
通讯地址:广东省珠海市香洲区海琴2号A347
电子邮箱:zhengf35@mail.sysu.edu.cn
招生招聘
博士后:要求具有博士学位,薪资待遇优厚
研究生:欢迎对相关研究感兴趣的本科生报考
本科毕业设计:欢迎对相关研究感兴趣大三学生联系
教育经历
2004—2008 兰州大学大气科学学院 学士 大气科学
2008—2013 中国科学院大气物理研究所 博士 气象学
2011—2011 首尔大学地球环境科学学院 访问学生
工作经历
2013—2017 中国科学院大气物理研究所 助理研究员
2017—2021 中国科学院大气物理研究所 副研究员
2021— 中山大学大气科学学院 副教授
2017—2017 国际理论物理研究中心 访问学者
2018—2018 国际理论物理研究中心 访问学者
2019—2020 科技部高技术研究发展中心 借调
学术兼职
国际理论物理中心ICTP青年协联成员Junior Associate
国际气象学与大气科学协会(IAMAS)中国委员会委员
国际气象学与大气科学协会(IAMAS)ECS青年委员
Future Earth Global Secretariat Hub (China) Science Officer
承担科研任务
中山大学“百人计划”项目,60万,主持
国家自然科学基金面上项目,“南半球热带外海温对南半球极锋急流的影响及机理” ,68万,主持
国家自然科学基金青年项目,“前冬南半球热带外海温对春季北半球副热带降水的影响及其机理” ,25万,主持
广东省自然科学基金面上项目,“南半球环状模和ENSO对华南钱汛期降水的协同影响及预测模型”,10万,主持
中山大学高校基本科研业务费项目,37.7万元,主持
国家自然科学基金重大项目,“北极海-冰-气系统对冬季欧亚大陆极端天气、气候事件的影响及机理” 项目“北极与热带系统协同影响欧亚大陆极端事件的机理”课题,324万,参与
中国科学院战略性先导科技专项,地球大数据科学工程 项目七“时空三极环境”专项“南极气候变化及其对东亚夏季气候的影响”子课题,455万,参与
国家重点研发计划全球变化专项,“全球变暖“停滞”现象辨识与机理研究” 项目第一课题,参与
国家重点研发计划全球变化专项,“亚洲中部干旱区气候变化影响与丝路文明变迁研究”项目第四课题 ,680万,参与
国家重点基础研究发展计划(973计划),“气候变暖背景下我国南方旱涝灾害的变化规律和机理及其影响与对策” 项目第四课题子课题,90万,参与
全球变化与海气相互作用专项,“太平洋-印度洋与亚洲季风的相互影响” ,参与
公益性行业专项,“两类ENSO的监测、分析和预测关键技术研究” ,参与
公益性行业专项,“南、北半球环状模对东亚季节降水的影响机理及预测模型研究” ,94万,参与
本科生课程
专业必修课《概率统计》
核心通识课程《气候变化:人类社会的历史责任和义务》
论文列表
2022
Wang, H., F. Zheng*, Y. N. Diao, J. P. Li, R. P. Sun, X. X. Tang, Y. Sun, F. Li, and Y. Z. Zhang., 2022: The synergistic effect of the preceding winter Northern Hemisphere annular mode and spring tropical North Atlantic SST on spring extreme cold events in the mid-high latitudes of East Asia. Clim. Dyn., Online.
Yao, S. L., P. S. Chu, R. G. Wu, and F. Zheng, 2022: Model consistency for the underlying mechanisms for the Inter-decadal Pacific Oscillation-tropical Atlantic connection. Environ. Res. Lett, online.
2021
Yao, S. L., W. Zhou, F.F. Jin, and F. Zheng, 2021: North Atlantic as a trigger for Pacific-wide decadal climate change. Geophy. Res. Lett., 48, e2021GL094719. https://doi.org/10.1029/2021GL094719
Zheng, F., J. Li, and S. Yao, 2021: Intermodel Diversity of Simulated Long-term Changes in the Austral Winter Southern Annular Mode: Role of the Southern Ocean Dipole. Adv. Atmos. Sci., 38, 375–386, https://doi.org/10.1007/s00376-020-0241-1.
Zhang, Y., J. Li, F. Zheng, M. Yu, J. Feng, and C. Sun, 2021: Impact of the South China sea summer monsoon on the indian ocean dipole in CMIP5 models. J. Clim., 34, 1963–1981, https://doi.org/10.1175/JCLI-D-20-0582.1.
Xie, T., W. Huang, S. Chang, F. Zheng, J. Chen, J. Chen, and F. Chen, 2021: Moisture sources of extreme precipitation events in arid Central Asia and their relationship with atmospheric circulation. Int. J. Climatol., 41, E271–E282, https://doi.org/10.1002/joc.6683.
2020
Zhang, Y., J. Li, S. Zhao, F. Zheng, J. Feng, Y. Li, and Y. Xu, 2020: Indian Ocean tripole mode and its associated atmospheric and oceanic processes. Clim. Dyn., 55, 1367–1383, https://doi.org/10.1007/s00382-020-05331-1.
Zuo, B., Z. Hou, F. Zheng, L. Sheng, Y. Gao, and J. Li, 2020: Robustness Assessment of the RSD t-Test for Detecting Trend Turning in a Time Series. Earth Sp. Sci., 7, https://doi.org/10.1029/2019EA001042.
2019
Li, J., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of Influence of the Northern Hemisphere Mid-high Latitudes on East Asian Climate: A Review. Adv. Atmos. Sci., 36, 902–921, https://doi.org/10.1007/s00376-019-8236-5.
Wang, Q., J. Li, F. F. Jin, J. C. L. Chan, C. Z. Wang, R. Q. Ding, C. Sun, F. Zheng, J. Feng, F. Xie, Y. J. Li, F. Li, and Y. D. Xu, 2019: Tropical cyclones act to intensify El Niño. Nat. Commun., 10, https://doi.org/10.1038/s41467-019-11720-w.
Yu, M., J. Li, F. Zheng, X. Wang, and J. Zheng, 2019: Simulating the IPOD, East Asian summer monsoon, and their relationships in CMIP5. Theor. Appl. Climatol., 135, 1307–1322, https://doi.org/10.1007/s00704-018-2442-4.
Zhang, Y., J. Li, J. Xue, F. Zheng, R. Wu, K. J. Ha, and J. Feng, 2019: The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean dipole development. Clim. Dyn., 53, 6665–6680, https://doi.org/10.1007/s00382-019-04953-4.
2018
Feng, J., J. Li, F. F. Jin, and F. Zheng, 2018: A Comparison of the Response of the Hadley Circulation to Different Tropical SST Meridional Structures During the Equinox Seasons. J. Geophys. Res. Atmos., 123, 2591–2604, https://doi.org/10.1002/2017JD028219.
Liu, T., J. Li, Y. J. Li, S. Zhao, F. Zheng, J. Zheng, and Z. Yao, 2018: Influence of the May Southern annular mode on the South China Sea summer monsoon. Clim. Dyn., 51, 4095–4107, https://doi.org/10.1007/s00382-017-3753-3.
Zheng, F., J. Li, F. Kucharski, R. Ding, and T. Liu, 2018: Dominant SST Mode in the Southern Hemisphere Extratropics and Its Influence on Atmospheric Circulation. Adv. Atmos. Sci., 35, 881–895, https://doi.org/10.1007/s00376-017-7162-7.
Zhang, Y., J. Li, J. Xue, J. Feng, Q. Wang, Y. Xu, Y. Wang, and F. Zheng, 2018: Impact of the South China sea summer monsoon on the Indian Ocean dipole. J. Clim., 31, 6557–6573, https://doi.org/10.1175/JCLI-D-17-0815.1.
2017
Zheng, F., J. Li, and R. Ding, 2017: Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay. Adv. Atmos. Sci., 34, 1358–1379, https://doi.org/10.1007/s00376-017-6339-4.
Ding, R., J. Li, Y. heng Tseng, C. Sun, and F. Zheng, 2017: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Clim. Dyn., 49, 1321–1339, https://doi.org/10.1007/s00382-016-3389-8.
Zheng, F., J. Li, R. Ding, and J. Feng, 2017: Cross-seasonal influence of the SAM on southern hemisphere extratropical SST and its relationship with meridional circulation in CMIP5 models. Int. J. Climatol., 38, 1499–1519, https://doi.org/10.1002/joc.5262.
Li, Y., J. Li, W. Zhang, Q. Chen, J. Feng, F. Zheng, W. Wang, and X. Zhou, 2017: Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming. J. Geophys. Res. Ocean., 122, 8524–8542, https://doi.org/10.1002/2017JC013052.
2016
Zheng, F., J. Li, Y. Li, S. Zhao, and D. Deng, 2016: Influence of the summer NAO on the spring-NAO-based predictability of the East Asian summer monsoon. J. Appl. Meteorol. Climatol., 55, 1459–1476, https://doi.org/10.1175/JAMC-D-15-0199.1.
Feng, J., J. Li, F. Zheng, F. Xie, and C. Sun, 2016: Contrasting impacts of developing phases of two types of El Niño on southern China rainfall. J. Meteorol. Soc. Japan, 94, 359–370, https://doi.org/10.2151/jmsj.2016-019.
2015
Zheng, F., J. Li, J. Feng, Y. Li, and Y. Li, 2015: Relative importance of the austral summer and autumn SAM in Modulating Southern Hemisphere extratropical autumn SST. J. Clim., 28, 8003–8020, https://doi.org/10.1175/JCLI-D-15-0170.1.
Zheng, F., J. Li, L. Wang, F. Xie, and X. Li, 2015: Cross-seasonal influence of the December-February southern hemisphere annular mode on march-may meridional circulation and precipitation. J. Clim., 28, 6859–6881, https://doi.org/10.1175/JCLI-D-14-00515.1.
Li, Y., J. Li, W. Zhang, X. Zhao, F. Xie, and F. Zheng, 2015: Ocean dynamical processes associated with the tropical Pacific cold tongue mode. J. Geophys. Res. Ocean., 120, 6419–6435, https://doi.org/10.1002/2015JC010814.
Liu, T., J. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Clim., 28, 8825–8839, https://doi.org/10.1175/JCLI-D-14-00704.1.
Zheng, F., J. Li, R. T. Clark, R. Ding, F. Li, and L. Wang, 2015: Influence of the boreal spring Southern Annular Mode on summer surface air temperature over northeast China. Atmos. Sci. Lett., 16, 155–161, https://doi.org/10.1002/asl2.541.
Wang, L., J. Li, Z. Wang, Y. Li, and F. Zheng, 2015: The oscillation of the perturbation potential energy between the extratropics and tropics in boreal winter. Atmos. Sci. Lett., 16, 119–126, https://doi.org/10.1002/asl2.532.
Wang, L., Z. Wang, J. Li, and F. Zheng, 2015: The impact of extratropics-arctic-seesaw of perturbation potential energy on surface air temperature in boreal winters. Atmos. Sci. Lett., 16, 425–431, https://doi.org/10.1002/asl2.575.
2014
Zheng, F., J. P. Li, and T. Liu, 2014: Some Advances in Studies of the Climatic Impacts of the Southern Hemisphere Annular Mode. J.Meteor.Res., 5–24.
2013
Zheng, F., J. Li, R. T. Clark, and H. C. Nnamchi, 2013: Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Clim., 26, 9860–9879, https://doi.org/10.1175/JCLI-D-13-00204.1.
2012
郑菲, 李建平, 2012: 前冬南半球环状模对春季华南降水的影响及其机理. 地球物理学报, 55, 3542–3557, https://doi.org/10.6038/j.issn.0001-5733.2012.11.004.
李斐,李建平,李艳杰,郑菲, 2012: 青藏高原绕流和爬流的气候学特征. 大气科学, 36, 1236–1252, https://doi.org/10.3878/j.issn.1006-9895.2012.11214.
郑菲, 孙诚, 李建平, 2012: 从气候变化的新视角理解灾害风险、暴露度、脆弱性和恢复力. 气候变化研究进展, https://doi.org/10.3969/j.issn.1673-1719.2012.02.001.
学术报告
26th Apr. 2019: Dominant SST mode in the Southern Hemisphere extratropics and its influence on atmospheric circulation. The 14th East Asian Climate Workshop, Hong Kong, China.
10th Oct., 2018: Air-Sea interactions in Southern Hemisphere extratropics and its influence on East Asian climate. The 5th CSSP-China Annual Workshop, Shanghai, China.
25th Oct., 2017: Influence of the southern annular mode on East Asian climate. Advanced School on Tropical-Extratropical Interactions on Intra-Seasonal Time Scales, Trieste, Italy.
23th Apr., 2017: Influence of the summer NAO on the spring-NAO-based predictability of the East Asian summer monsoon. General Assembly 2017 of the European Geosciences Union (EGU), Vienna, Austria.
27th Oct., 2016: Influence of the summer NAO on the spring-NAO-based predictability of the East Asian summer monsoon. Workshop on Teleconnections in the Present and Future Climate, Trieste, Italy.
24th Dec., 2014: Influence of the boreal spring Southern Annular Mode on summer surface air temperature over northeast China. Annual meeting of National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Beijing, China;
30th May, 2014: A seasonal prediction model for flood season precipitation over China. Video conference for predicting flood season precipitation, China Meteorological Administration, Beijing, China;
4th Dec., 2013: Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. Annual meeting of National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Beijing, China;
2nd Aug., 2013: A discussion about how young researchers participate in scientific communication and maintain research integrity. 4th China US Youth Science Forum, Beijing, China;
3rd Jul., 2013: Impact of the preceding boreal winter Southern Hemisphere annular mode on spring rainfall over South China. 12th East Asian Climate Workshop, Busan, Korea;
27th Jun., 2013: A prediction for summer precipitation based on time-scale decomposition method. Video conference for predicting midsummer precipitation, China Meteorological Administration, Beijing, China;
6th Aug., 2012: Relationship between the preceding boreal winter Southern Hemisphere annular mode and spring precipitation over South China. International Commission on Dynamical Meteorology (ICDM) Workshop 2012, Yunnan, China;
23th Apr. 2012: Impact of preceding boreal autumn Antarctic Ozone on spring precipitation over South China. General Assembly 2012 of the European Geosciences Union (EGU), Vienna, Austria;
26th, Sep., 2011: The relationship between preceding boreal winter Southern Hemisphere annular mode and spring precipitation in South China, Center for Planetary Science (CPS) 8th International School of Planetary Sciences, Kobe, Japan;
1st Jul, 2011: The relationship between preceding boreal winter Southern Hemisphere annular mode and spring precipitation in South China. XXV International Union of Geodesy and Geophysics (IUGG) General Assembly, Melbourne, Australia.
研究兴趣
SAM / 南极涛动AAO的气候影响
南半球环状模(SAM)是南半球热带外地区环流变率的主导模态。由于SAM在空间上的大尺度特征,全球多个范围的气候均响应于SAM的变率和变化。探讨SAM的气候影响,是近几十年来得到国际国内广泛关注的方向。

图1 南半球夏季(DJF)(a)环流的气候态和(b)SAM为正位相时的环流异常的示意图(Zheng et al., 2014)
SAM的长期变化
南半球气候变化的显著表现之一,是极区平流层臭氧的损耗,也即 “南极臭氧洞”,其同时也是造成SAM上升趋势的主要原因。臭氧损耗通过影响SAM的趋势,成为过去几十年南半球气候变化最主要的驱动力。

图2 卫星监测的2020年9月南极臭氧洞
华南前汛期降水
华南是我国雨量最充沛的地区,前汛期降水具有雨量强度大、持续时间长的特征,往往对人民生产生活造成巨大损失。华南前汛期降水受到不同纬度和多尺度复杂天气系统的协同作用,研究华南前汛期降水变率及影响因子,对提高前汛期降水预测水平,对华南地区防灾减灾至关重要。

图3 (a)春季总降水量(mm),(b)春季降水占全年降水的比例(%),(c)春季降水年际标准差
参与科普
2013年9月,大牛零距离,采访中科院外籍院士、英国里丁大学气象系Brian Hoskins教授/爵士,美国科学院院士、俄罗斯科学院外籍院士、美国华盛顿大学大气科学系John M. Wallace教授以及美国气象学会会士、美国华盛顿大学应用数学系Ka-Kit Tung教授

2021年3月,在中国科学技术馆为青少年讲解气候变化

2021年3月,在中国科学技术馆参与气象日活动

2020年12月,在北京市中关村三小为小学生科普南极气候变化

2020年12月,在Bilibili线上参与“2020气候大事件”直播活动
