研究方向

磁层物理、空间等离子体波动、行星际-磁层耦合

 

教育经历

中国科学技术大学            地球物理学  本科  少年班学院             2010年09月 – 2014年06月                                                           
中国科学技术大学            空间物理学  博士  地空学院                2014年09月 – 2019年06月       

                                

工作经历

中国科学技术大学            博士后  地空学院                     2019年06月 – 2021年4月   
中山大学                          副教授  大气科学学院              2021年05月 – 至今 

 

获得奖励

1. 中国科学院院长优秀奖 (2019)
2. 中国科学技术大学优秀博士毕业论文 (2019)
3. 中国科学技术大学地球和空间科学学院院长奖 (2018)
4. 中国地球科学联合学术年会学生优秀论文 (2018)

科研项目

1. 中国博士后科学基金会-博士后创新人才支持计划,主持 (2019-2021)
2. 中国博士后科学基金会-博士后面上项目,主持 (2019-2021)

3. 国家自然科学基金-青年项目,主持 (2021-2023)

 

发表论文

  1. Liu, N., Su, Z.*, Gao, Z., Zheng, H., Wang, Y., Wang, S., & Wygant, J. R. (2017). Simultaneous disappearances of plasmaspheric hiss, exohiss and chorus waves triggered by a sudden decrease in solar wind dynamic pressure. Geophysical Research Letters, 43, 52–61. https://doi.org/10.1002/2016GL071987
  2. Liu, N., Su, Z.*, Gao, Z., Reeves, G. D., Zheng, H., Wang, Y., & Wang, S. (2017). Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS, and POES satellites. Journal of Geophysical Research: Space Physics, 122, 10,421–10,435. https://doi.org/10.1002/2017JA024470
  3. Liu, N., Su, Z.*, Zheng, H., Wang, Y., & Wang, S. (2018). Prompt disappearance and emergence of radiation belt magnetosonic waves induced by solar wind dynamic pressure variations. Geophysical Research Letters, 45, 585–594. https://doi.org/10.1002/2017GL076382
  4. Liu, N., Su, Z.*, Zheng, H., Wang, Y., & Wang, S. (2018). Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts. Geophysical Research Letters, 45, 7985–7995. https://doi.org/10.1029/2018GL079232
  5. Liu, N.Su, Z.*Gao, Z.Zheng, H.Wang, Y., & Wang, S. ( 2019). Magnetospheric chorus, exohiss, and magnetosonic emissions simultaneously modulated by fundamental toroidal standing Alfvén waves following solar wind dynamic pressure fluctuationsGeophysical Research Letters461900– 1910https://doi.org/10.1029/2018GL081500
  6. Liu, N., Su, Z.*, Gao, Z., Zheng, H., Wang, Y., Wang, S. et al. (2020). Comprehensive observations of substorm‐enhanced plasmaspheric hiss generation, propagation, and dissipation. Geophysical Research Letters, 47, e2019GL086040. https://doi.org/10.1029/2019GL086040
  7. Liu, N., Su, Z.*, Gao, Z., Zheng, H., Wang, Y., & Wang, S. (2020). Can solar wind decompressive discontinuities suppress magnetospheric electromagnetic ion cyclotron waves associated with fresh proton injections? Geophysical Research Letters, 47, e2020GL090296. https://doi.org/10.1029/2020GL090296
  8. Liu, N., Zheng, H.* & Su, Z. (2017). Three-dimensional ray-tracing simulation of fast magnetoacoustic waves in a stratified solar atmosphere, Sci. China Technol. Sci. (2017) 60: 1570. https://doi.org/10.1007/s11431-016-0589-2
  9. Wang, Z., Su, Z.*, Liu, N.*, Dai, G., Zheng, H., Wang, Y., & Wang, S. (2020). Suprathermal electron evolution under the competition between plasmaspheric plume hiss wave heating and collisional cooling. Geophysical Research Letters, 47, e2020GL089649. https://doi.org/10.1029/2020GL089649
  10. Teng, S.*Liu, N.*, Ma, Q., & Tao, X. (2021). Characteristics of low‐harmonic magnetosonic waves in the Earth's inner magnetosphere. Geophysical Research Letters, 48, e2021GL093119. https://doi.org/10.1029/2021GL093119
  11. Wu, Z., Su, Z.*, Liu, N.*, Gao, Z., Zheng, H., Wang, Y., & Wang, S. (2021). Off‐equatorial source of magnetosonic waves extending above the lower hybrid resonance frequency in the inner magnetosphere. Geophysical Research Letters, 48, e2020GL091830. https://doi.org/10.1029/2020GL091830
  12. Teng, S., Liu, N., Ma, Q., Tao, X.*, & Li, W. (2021). Direct observational evidence of the simultaneous excitation of electromagnetic ion cyclotron waves and magnetosonic waves by an anisotropic proton ring distribution. Geophysical Research Letters, 48, e2020GL091850. https://doi.org/10.1029/2020GL091850
  13. Su, Z.*Liu, N., Gao, Z., Wang, B., Zheng, H., Wang, Y., & Wang, S. (2020). Rapid Landau heating of Martian topside ionospheric electrons by large‐amplitude magnetosonic waves. Geophysical Research Letters, 47, e2020GL090190. https://doi.org/10.1029/2020GL090190
  14. Su, Z.*, Liu, N., Zheng, H., Wang, Y., & Wang, S. (2018). Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes. Geophysical Research Letters, 45, 565–577. https://doi.org/10.1002/2017GL076754
  15. Su, Z.*, Liu, N., Zheng, H., Wang, Y., & Wang, S. (2018). Multipoint observations of nightside plasmaspheric hiss generated by substorminjected electronsGeophysical Research Letters, 45. https://doi.org/10.1029/2018GL079927
  16. Su, Z.*, Wang, G., Liu, N., Zheng, H., Wang, Y., & Wang, S. (2017). Direct observation of generation and propagation of magnetosonic waves following substorm injection. Geophysical Research Letters, 44, 7587–7597. https://doi.org/10.1002/2017GL074362
  17. Gao, Z., Su, Z.*, Xiao, F., Summers, D., Liu, N., Zheng, H., et al. ( 2018). Nonlinear coupling between whistler‐mode chorus and electron cyclotron harmonic waves in the magnetosphere. Geophysical Research Letters, 45, 12,685– 12,693. https://doi.org/10.1029/2018GL080635
  18. Dai, G., Su, Z.*, Liu, N., Wang, B., Zheng, H., Wang, W., et al. (2019). Quenching of equatorial magnetosonic waves by substorm proton injections. Geophysical Research Letters, 46, 6156– 6167. https://doi.org/10.1029/2019GL082944
  19. He, Z., Yu, J.*, Li, K., Liu, N., Chen, Z., & Cui, J. (2021). A comparative study on the distributions of incoherent and coherent plasmaspheric hiss. Geophysical Research Letters, 48, e2021GL092902. https://doi.org/10.1029/2021GL092902