联系方式
通讯地址: 广东省珠海市唐家湾镇中山大学珠海校区海琴2号,邮编:519082
Email: yibq@mail.sysu.edu.cn
ResearcherID:http://www.researcherid.com/rid/E-4076-2012
Reseachgate: https://www.researchgate.net/profile/Bingqi_Yi
工作经历
2016.08-至今 中山大学大气科学学院,副教授、博士研究生导师
2015.08-2016.08 美国德克萨斯农工大学大气科学系,助理研究科学家
2013.08-2015.08 美国德克萨斯农工大学大气科学系,博士后研究员
教育背景
2008.08-2013.08 美国德克萨斯农工大学大气科学系,博士
2005.08-2008.06 北京大学物理学院大气科学系,硕士
2001.08-2005.06 南京信息工程大学大气科学系,学士
学术兼职
担任数十个知名国际学术期刊的专业审稿人,如:
Geophys. Res. Lett., Remote Sens. Environ., Atmos. Chem. Phys., J. Geophys. Res.-Atmos., Adv. Atmos. Sci., J. Adv. Model. Earth Sys., J. Atmos. Sci., Sci. Rep., J. Quantit. Spectro. Radiat. Trans., Atmos. Environ., Atmos. Res., J. Atmos. Ocean. Tech., J. Appl. Meteoro. Climat., Atmos. Meas. Tech., Theo. Appl. Climat., J. Appl. Remote Sens., Remote Sens, Atmos., 中国科学:地球科学,
讲授课程
本科生课程:《卫星气象学》、《大气物理学》、《Python语言简介及其在大气科学领域的应用》
研究生课程:《大气辐射与遥感》、《大气物理学》(研究生)
研究领域
大气辐射;云与气溶胶的直接辐射效应的卫星观测与数值模拟;气溶胶-云-降水的相互作用;气溶胶和云对天气气候的影响与反馈;飞机轨迹云的辐射效应;太阳能光伏发电
科研项目
国家自然科学基金面上项目:混合相态云光学属性及其参数化在模式中的应用研究(主持)
广东省自然科学基金面上项目:云和气溶胶对广东地区光伏发电能力的影响评估(主持)
国家自然科学基金面上项目:东亚地区冰云和水云的辐射强迫及其对区域气候的影响与反馈(主持)
中山大学"百人计划二期"急需青年杰出人才项目(主持)
主持多项开放课题及横向项目
重要奖励
中山大学逸仙学者计划“新锐学者”(2022)
Elsevier/JQSRT Richard M. Goody国际大气辐射与遥感青年科学家奖(2021)
广东省“珠江人才”计划青年拔尖人才(2017)
第二届“气象出版杯”全国大气科学类专业青年教师教学交流与竞赛优胜奖(2017)
美国德克萨斯农工大学大气科学系杰出科研人员奖(2015)
美国NASA Group Achievement Award (2013)
个人论著
期刊论文 (通讯作者标注*)
[41] Lin, Q., B. Yi*, L. Bi, and Z. Yang, 2025: Machine learning algorithm facilitates fast derivation of light-scattering properties of sea salt aerosol, J. Aerosol Sci., 187C, 106571, doi:10.1016/j.jaerosci.2025.106571.
[40] Yi, B.*, R. Li, and Z. Yang, 2025: Global distributions of multi-layer and multi-phase clouds and their cloud radiative effects, J. Quant. Spectros. Rad. Trans., 333, 109334, doi:10.1016/j.jqsrt.2024.109334.
[39] Wang, S., and B. Yi*, 2024: Bibliometric analysis of aerosol-radiation research from 1999 to 2023, Atmos., 15(10), 1189, doi:10.3390/atmos15101189.
[38] Zhang, H., L. Liu, L. Bi*, W. Lin, C. Liu, B. Yi, L. Liu, Q. Chen, X. Wei, H. Letu, Z. Li, and W. Li, 2024: Advances in atmospheric radiation: Theory, model, and applications. Part I: Atmospheric gas absorption and particle scattering, J. Meteor. Res., 38(2), 151–182, doi: 10.1007/s13351-024-3091-4.
[37] Jiang, Y., and B. Yi*, 2023: An assessment of the influences of clouds on the solar photovoltaic potential over China, Remote Sens., 15, 258, doi:10.3390/rs15010258.
[36] Yang, J., B. Yi*, S. Wang, Y. Liu, and Y. Li, 2022: Diverse cloud and aerosol impacts on solar photovoltaic potential in southern China and northern India, Sci. Rep., 12, 19671, doi:10.1038/s41598-022-24208-3.
[35] Yi, B.*, 2022: Diverse cloud radiative effects and global surface temperature simulations induced by different ice cloud optical property parameterizations, Sci. Rep., 12, 10539, doi:10.1038/s41598-022-14608-w.
[34] Liu, Y., and B. Yi*, 2022: Aerosols over East and South Asia: Type identification, optical properties, and implications for radiative forcing, Remote Sens., 14, 2058, doi:10.3390/rs14092058.
[33] Li, Y., B. Yi*, and M. Min, 2022: Diurnal variations of cloud optical properties during day-time over China based on Himawari-8 satellite retrievals, Atmos. Environ., 277, 119065, doi:10.1016/j.atmosenv.2022.119065.
[32] Luo, Q., B. Yi*, and L. Bi, 2021: Sensitivity of mixed-phase cloud optical properties to cloud particle model and microphysical factors at wavelengths from 0.2 to 100 µm, Remote Sens., 13, 2330, doi:10.3390/rs13122330.
[31] Sun, L.-H., L. Bi*, and B. Yi, 2021: The use of superspheroids as surrogates for modeling electromagnetic wave scattering by ice crystals, Remote Sens., 13, 1733, doi:10.3390/rs13091733.
[30] Wang, Z., L. Bi*, X. Jia, B. Yi, X. Lin, and F. Zhang, 2020: Impact of dustshortwave absorbability on the East Asian summer monsoon, Geophys. Res. Lett., 47, e2020GL089585, doi:10.1029/2020GL089585.
[29] Yang, J.*, S. Ding, P. Dong, L. Bi, and B. Yi, 2020: Advanced radiative transfer modeling system developed for satellite data assimilation and remote sensing applications, J. Quant. Spectros. Rad. Trans., 251, 107043, doi:10.1016/j.jqsrt.2020.107043.
[28] Bi, L.*, S. Ding, R. Zong, and B. Yi, 2020: Examining Asian dust refractive indices for brightness temperature simulations in the 650–1135 cm-1 spectral range, J. Quant. Spectros. Rad. Trans., 247, 106945, doi:10.1016/j.jqsrt.2020.106945.
[27] Yi, B.*, S. Ding, and L. Bi, 2020: Impacts of cloud scattering properties on FY-3D HIRAS simulations, J. Quant. Spectros. Rad. Trans., 246, 106902, doi:10.1016/j.jqsrt.2020.106902.
[26] Lai, R., S. Teng, B. Yi, H. Letu, M. Min, S. Tang, and C. Liu*, 2019: Comparison of cloud properties from Himawari-8 and FengYun-4A geostationary satellite radiometers with MODIS cloud retrievals, Remote Sens., 11, 1703, doi:10.3390/rs11141703.
[25] Wang, Z., L. Bi*, B. Yi, and X. Zhang, 2019: How the inhomogeneity of wet sea salt aerosols affects direct radiative forcing, Geophys. Res. Lett., 46, 1805–1813, doi:10.1029/2018GL081193.
[24] Zhao, W., Y. Peng*, B. Wang, B. Yi, Y. Lin, and J. Li, 2018: Comparison of three ice cloud optical schemes in climate simulations with Community Atmospheric Model version 5, Atmos. Res., 204, 37–53, doi:10.1016/j.atmosres.2018.01.004.
[23] Bi, L.*, W. Lin, Z. Wang, X. Tang, X. Zhang, and B. Yi, 2018: Optical modeling of sea salt aerosols: the effects of non-sphericity and inhomogeneity, J. Geophys. Res. Atmos., 123, 543–558, doi:10.1002/2017JD027869.
[22] Xue, H., Q. Jin, B. Yi*, G. Mullendore, H. Jin, and X. Zheng, 2017: Modulation of soil initial state on WRF model performance over China, J. Geophys. Res. Atmos., 122, 11278–11300, doi:10.1002/2017JD027023.
[21] Yi, B.*, A. D. Rapp, P. Yang, B. A. Baum, and M. D. King, 2017: A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between Collection 6 and Collection 5.1: Cloud radiative effects, J. Geophys. Res. Atmos., 122, 4550–4564, doi:10.1002/2016JD025654.
[20] Yi, B.*, A. D. Rapp, P. Yang, B. A. Baum, and M. D. King, 2017: A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between Collection 6 and Collection 5.1: Pixel-to-pixel comparisons, J. Geophys. Res. Atmos., 122, 4528–4549, doi:10.1002/2016JD025586.
[19] Yi, B.*, P. Yang, Q. Liu, P. van Delst, S. Boukabara,and F. Weng, 2016: Improvements on the ice cloud modeling capabilities of the Community Radiative Transfer Model, J. Geophys. Res. Atmos., 121, 13577–13590, doi:10.1002/2016JD025207.
[18] Brasseur, G. P.*, M. Gupta, B. E. Anderson, S. Balasubramanian, S. Barrett, D. Duda, G. Fleming, P. M. Forster, J. Fuglestvedt, A. Gettelman, R. N. Halthore, S. D. Jacob, M. Z. Jacobson, A. Khodayari, K.-N. Liou, M. T. Lund, R. C. Miake-Lye, P. Minnis, S. Olsen, J. E. Penner, R. Prinn, U. Schumann, H. B. Selkirk, A. Sokolov, N. Unger, P. Wolfe, H.-W. Wong, D. W. Wuebbles, B. Yi, P. Yang, and C. Zhou, 2016: Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II, Bull. Amer. Meteor. Soc., 97, 561–583, doi:10.1175/BAMS-D-13-00089.1.
[17] Li, J.*, H. W. Barker, P. Yang, and B. Yi, 2015: On the aerosol and cloud phase function expansion moments for radiative transfer simulations, J. Geophys. Res. Atmos., 120, 12128–12142, doi:10.1002/2015JD023632.
[16] Barker, H. W.*, J. N. S. Cole, J. Li, B. Yi, and P. Yang, 2015: Estimation of errors in two-stream approximations of the solar radiative transfer equation for cloudy-sky conditions, J. Atmos. Sci., 72, 4053–4074, doi:10.1175/JAS-D-15-0033.1.
[15] Yi, B.*, P. Yang, A. E. Dessler, and A. M. da Silva, 2015: Response of aerosol direct radiative effect to the East Asian summer monsoon, IEEE Geosci. Remote Sens. Lett., 12(3), 597–600, doi:10.1109/LGRS.2014.2352630.
[14] Yang, P.*, K. N. Liou, L. Bi, C. Liu, B. Q. Yi, and B. A. Baum, 2015: On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization, Adv. Atmos. Sci., 32(1), 32–63, doi:10.1007/s00376-014-0011-z.
[13] Yi, B.*, X. Huang, P. Yang, B. A. Baum, and G. W. Kattawar, 2014: Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code, J. Quant. Spectros. Rad. Trans., 146, 540–548, doi:10.1016/j.jcprt.2014.05.020.
[12] Bi, L.*, P. Yang, C. Liu, B. Yi, B. A. Baum, B. Van Diedenhoven, and H. Iwabuchi, 2014: Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds, J. Quant. Spectros. Rad. Trans., 146, 158–174, doi:10.1016/j.jqsrt.2014.03.017.
[11] Yi, B.*, P. Yang, and B. A. Baum, 2014: Impact of pollution on the optical properties of trans-Pacific East Asian dust from satellite and ground-based measurements, J. Geophys. Res. Atmos., 119, 5397–5409, doi:10.1002/2014JD021721.
[10] Colarco, P. R.*, E. P. Nowottnick, C. A. Randles, B. Yi, P. Yang, K.-M. Kim, J. A. Smith, and C. G. Bardeen, 2014: Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index, J. Geophys. Res.Atmos., 119, 753–786, doi:10.1002/2013JD020046.
[9] Yi, B., P. Yang*, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K. N. Liou, 2013: Influence of ice particle surface roughening on global cloud radiative effect, J. Atmos. Sci., 70, 2794–2807, doi:10.1175/JAS-D-13-020.1.
[8] Li, J., Q. Ying*, B. Yi, and P. Yang, 2013: Role of stabilized Criegee intermediates in the formation of atmospheric sulfate in eastern United States, Atmos. Environ., 79, 442–447, doi:10.1016/j.atmosenv.2013.06.048.
[7] Lin, T.-H., P. Yang*, and B. Yi, 2013: Effect of black carbon on dust property retrievals from satellite observations, J. Appl. Remote Sens., 7, 073568, doi:10.1117/1.JRS.7.073568.
[6] Yi, B., P. Yang*, K. N. Liou, P. Minnis, and J. E. Penner, 2012: Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.
[5] Zhang, J. P., T. Zhu, Q. H. Zhang*, C. C. Li, H. L. Shu, Y. Ying, Z. P. Dai, X. Wang, X. Y. Liu, A. M. Liang, H. X. Shen, and B. Q. Yi, 2012: The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings, Atmos. Chem. Phys., 12, 5031–5053, doi:10.5194/acp-12-5031-2012.
[4] Yi, B.*, P. Yang, K.P. Bowman, and X.D. Liu, 2012: Aerosol-cloud-precipitation relationships from satellite observations and global climate model simulations, J. Appl. Remote Sens., 6, 063503, doi:10.1117/1.JRS.6.063503.
[3] Yi, B., C.N. Hsu*, P. Yang, and S.C. Tsay, 2011: Radiative transfer simulation of dust-like aerosols: uncertainties from particle shape and refractive index, J. Aerosol Sci., 42, 631–644, doi:10.1016/j.jaerosci.2011.06008.
[2] Shi, Z.G, X.D. Liu*, Z.S. An, B. Yi, P. Yang, and N. Mahowald, 2011: Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: Contributions from the regional tectonic uplift and global climate change, Clim. Dynam., 37, 2289–2301, doi:10.1007/s00382-011-1078-1.
[1] Yi, B. and Q.H. Zhang*, 2010: Near-equatorial typhoon development: Climatology and numerical Simulation, Adv. Atmos. Sci., 27(5), 1014–1024, doi:10.1007/s00376-009-9033-3.
会议论文
[2] Yi, B.*, P. Yang, F. Weng, and Q. Liu, 2014: Assessment and validation of the community radiative transfer model for ice cloud conditions, Proc. SPIE 9259,Remote Sensing of the Atmosphere, Clouds, and Precipitation V, 92591C, doi: 10.1117/12.2069341.
[1] Bi, L.*, P. Yang, C. Liu, B. Yi, and S. Hioki, 2014: Optical properties of ice clouds: new modeling capabilities and relevant applications, Proc. SPIE 9259, Remote Sensing of the Atmosphere, Clouds, and Precipitation V, 92591A, doi: 10.1117/12.2069354.
招聘信息
欢迎有兴趣致力于大气辐射、气溶胶和云的直接/间接辐射效应、辐射与气候、气候变化相互影响与反馈机制等方面研究的同学加入我们的研究团队,攻读研究生学位。本研究组毕业生去向为:省市气象局、公务员、民航空管、国企新能源公司等。欢迎来信咨询洽谈!