崔峻,男,1974年生,中山大学空间与行星科学系主任、国家杰出青年科学基金获得者、博士生导师。1997年7月获北京大学物理学学士学位,2001年7月获中国科学院国家天文台硕士学位,2008年5月获美国亚利桑那大学天文学博士学位,2008年8月至2010年7月在英国帝国理工大学物理系从事博士后研究。在包括Nature子刊、Journal of Geophysical Research、Geophysical Research Letters、The Astrophysical Journal、The Astrophysical Journal Letters、Astronomy and Astrophysics等在内的SCI期刊发表学术论文250余篇,其中第一作者/通讯作者论文50余篇,总引用近4000次。曾主持国家自然科学基金委杰青项目、重点项目、国际(地区)合作项目、面上项目、国防科工局民用航天预先研究重点项目、澳门科技发展基金项目等多个省部级项目。先后培养硕士、博士研究生和博士后50余人。任中国地球物理学会行星物理专业委员会主任、Journal of Geophysical Research – Planets、Earth and Planetary Physics、Research in Astronomy and Astrophysics、《地球与行星物理论评》、《天文学报》等期刊主编、副主编、编委,以及澳门科技发展基金顾问、广东省政协委员、中国农工民主党广东省委委员和中央专业委员会委员等。
主要研究领域为行星大气和空间环境,多年来广泛参与国内外多个重大行星探测任务,曾获欧洲空间局颁发的金星快车杰出贡献奖。学术创新点主要包括以下两个方面:1)系统性研究了行星大气逃逸现象,提出了二次逃逸新概念,对传统金斯逃逸理论做出了重要修正,定量厘清了多个太阳系天体(火星、金星、土卫六、木卫一、海卫一等)的化学逃逸率和溅射逃逸率,并明确了极端天气事件(如太阳爆发、沙尘暴等)对大气逃逸的显著影响;2)构建了截至目前国际上化学最全面、微观物理过程最丰富的适用于火星和金星的电离层光化学模型,揭示了质子化过程对于电离层结构与成分的重要贡献,提出了“硬度”这一刻画电离层光电子的新参数,明确了光电子谱型可作为行星大气各成分分布的重要指示器。近年来的主要研究兴趣包括:1)系外行星大气光谱分析及模式研究;2)太阳系类地天体宜居性演化;3)太阳系小天体的掩食观测与特征刻画;4)行星大气物理化学过程的实验室模拟。
代表性论文:
1. Statistical properties of Ultraluminous IRAS galaxies from an HST imaging survey, Cui, J.*, Xia, X.-Y., Deng, Z.-G., Mao, S., and Zou, Z.-L., 2001, The Astronomical Journal, 122(1), 63-82
2. Molecular hydrogen in the damped Lyα absorber of Q1331+170, Cui, J.*, Bechtold, J., Ge, J., and Meyer, D. M., 2005, The Astrophysical Journal, 633(2), 649-663
3. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere, Cui, J.*, Yelle, R. V., and Volk, K., 2008, Journal of Geophysical Research - Planets, 113(E10), E10004
4. Analysis of Titan's upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements, Cui, J.*, Yelle, R. V., Vuitton, V., Waite Jr., J. H., Kasprzak, W. T., Gell, D., Niemann, H. B., Müller-Wodarg, I. C. F., Borggren, N., Fletcher, G. G., Patrick, E. L., Raaen, E., and Magee, B. A., 2009, Icarus, 200, 581-615
5. Diurnal variations of Titan's ionosphere, Cui, J.*, Galand, M., Yelle, R. V., Vuitton, V., Wahlund, J.-E., Lavvas, P. P., Müller-Wodarg, I. C. F., Cravens, T. E., Kaprzak, W. T., and Waite Jr., J. H., 2009, Journal of Geophysical Research – Space Physics, 114(A6), A06310
6. Ion transport in Titan's upper atmosphere, Cui, J.*, Galand, M., Yelle, R. V., Wahlund, J.-E., Ågren, K., Waite Jr., J. H., and Dougherty, M. K., 2010, Journal of Geophysical Research – Space Physics, 115(A6), A06314
7. Suprathermal electron spectra in the Venus ionosphere, Cui, J.*, Galand, M., Coates, A. J., Zhang, T.-L., and Müller-Wodarg, I. C. F., 2011, Journal of Geophysical Research – Space Physics, 116(A4), A04321
8. The implications of the H2 variability in Titan’s exosphere, Cui, J.*, Yelle, R. V., Müller-Wodarg, I. C. F., Lavvas, P. P., and Galand, M., 2011, Journal of Geophysical Research – Space Physics, 116(A11), A11324
9. The CH4 structure in Titan’s upper atmosphere revisited, Cui, J.*, Yelle, R. V., Strobel, D. F., Müller-Wodarg, I. C. F., Snowden, D. S., Koskinen, T. T., and Galand, M., 2012, Journal of Geophysical Research – Planets, 117(E11), E11006
10. Compositional effects in Titan’s thermospheric gravity waves, Cui, J.*, Lian, Y., and Müller-Wodarg, I. C. F., 2013, Geophysical Research Letters, 40(1), 43-47
11. Density waves in Titan’s upper atmosphere, Cui, J.*, Yelle, R. V., Li, T., Snowden, D. S., and Müller-Wodarg, I. C. F., 2014, Journal of Geophysical Research – Space Physics, 119(1), 490-518
12. The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data, Cui, J.*, Galand, M., Zhang, S.-J., Vigren, E., and Zou, H., 2015, Journal of Geophysical Research – Planets, 120(2), 278-286
13. Day-to-night transport in the Martian ionosphere: Implications from total electron content measurements, Cui, J.*, Galand, M., Yelle, R. V., Wei, Y., and Zhang, S.-J., 2015, Journal of Geophysical Research – Space Physics, 120(3), 2333-2346
14. The variability of HCN in Titan’s upper atmosphere implied by the Cassini Ion Neutral Mass Spectrometer measurements, Cui, J.*, Cao, Y.-T., Lavvas, P. P., and Koskinen, T. T., 2016, The Astrophysical Journal Letters, 826(1), L5
15. The structure of Titan’s N2 and CH4 coronae, Jiang, F.-Y., Cui, J.*, and Xu, J.-Y., 2017, The Astronomical Journal, 154(6), 271
16. The impact of crustal magnetic fields on the thermal structure of the Martian upper atmosphere, Cui, J.*, Yelle, R. V., Zhao, L.-L., Stone, S., Jiang, F.-Y., Cao, Y.-T., Yao, M.-J., Koskinen, T. T., and Wei, Y., 2018, The Astrophysical Journal Letters, 853(2), L33
17. Ionization efficiency in the dayside Martian upper atmosphere, Cui, J.*, Wu, X.-S., Xu, S.-S., Wang, X.-D., Wellbrock, A., Nordheim, T. A., Wang, W.-R., and Wei, Y., 2018, The Astrophysical Journal Letters, 857(2), L18
18. Photochemical escape of atomic C and N on Mars: Clues from a multi-instrument MAVEN dataset, Cui, J.*, Wu, X.-S., Gu, H., Jiang, F.-Y., and Wei, Y., 2019, Astronomy and Astrophysics, 621, A23
19. A test particle Monte Carlo investigation of the CH4 torus around Saturn, Niu, D.-D., Cui, J.*, Gu, H., Dong, C.-Y., Zhou, L.-Y., Wellbrock, A., Jiang, F.-Y., and Xu, X.-J., 2019, The Astronomical Journal, 157(1), 15
20. Monte Carlo calculations of the atmospheric sputtering yields on Titan, Gu, H., Cui, J.*, Niu, D.-D., Wellbrock, A., Tseng, W.-L., and Xu, X.-J., 2019, Astronomy and Astrophysics, 623, A18
21. The morphology of the topside Martian ionosphere: Implications on bulk ion flow, Wu, X.-S., Cui, J.*, Xu, S.-S., Lillis, R.J., Yelle, R.V., Edberg, N.J.T., Vigren, E., Rong, Z.-J., Fan, K., Guo, J.-P., Cao, Y.-T., Jiang, F.-Y., Wei, Y., and Mitchell, D.L., 2019, Journal of Geophysical Research – Planets, 124(3), 734-751
22. Evaluating local ionization balance in the nightside Martian upper atmosphere during MAVEN Deep Dip campaigns, Cui, J.*, Cao, Y.-T., Wu, X.-S., Xu, S.-S., Yelle, R.V., Stone, S., Vigren, E., Edberg, N.J.T., Shen, C.-L., He, F., and Wei, Y., 2019, The Astrophysical Journal Letters, 876(1), L12
23. Structural variability of the cross-terminator Martian ionosphere: Implications on plasma sources, Cao, Y.-T., Cui, J.*, Wu, X.-S., and Wei, Y., 2019, Journal of Geophysical Research - Planets, 124(6), 1495-1511
24. On the hardness of the photoelectron energy spectrum near Mars, Wu, X.-S., Cui, J.*, Cao, Y.-T., Liu, L.-J., He, F., and Wei, Y., 2019, Journal of Geophysical Research - Planets, 124(11), 2745-2753
25. Dayside nitrogen and carbon escape on Titan: The role of exothermic chemistry, Gu, H., Cui, J.*, Lavvas, P.P., Niu, D.-D., Wu, X.-S., Guo, J.-H., He, F., and Wei, Y., 2020, Astronomy and Astrophysics, 633, A8
26. Field-aligned photoelectron energy peaks at high altitude and nightside of Titan, Cao, Y.-T.*, Wellbrock, A., Coates, A.J., Caro-Carretero, R., Jones, G.H., Cui, J., Galand, M., and Dougherty, M.K., 2020, Journal of Geophysical Research - Planets, 125(1), e06252
27. Neutral heating efficiency in the dayside Martian upper atmosphere, Gu, H., Cui, J.*, Niu, D.-D., Cao, Y.-T., Wu, X.-S., Wu, Z.-P., Li, J., He, F., and Wei, Y., 2020, The Astronomical Journal, 159(2), 39
28. Atomic oxygen escape on Mars driven by electron impact ionization and excitation, Zhang, Q., Gu, H., Cui, J.*, Cheng, Y.-M., He, Z.-G., Zhong, J.-H., He, F., and Wei, Y., 2020, The Astronomical Journal, 159(2), 54
29. Energetic electron depletions in the nightside Martian upper atmosphere revisited, Niu, D.-D., Cui, J.*, Gu, H., Wu, X.-S., Wu, S.-Q., Lu, H.-Y., Chai, L.-H., and Wei, Y., 2020, Journal of Geophysical Research – Space Physics, 125(4), e27670
30. Nitric oxide abundance in the Martian thermosphere and its diurnal variation, Cui, J.*, Fu, M.-H., Ren, Z.-P., Gu, H., Guo, J.-H., Wu, X.-S., Wu, Z.-P., Lai, H.-R., and Wei, Y., 2020, Geophysical Research Letters, 47(9), e87252
31. Abnormal dawn-dusk asymmetry in the Martian ionosphere, Cui, J.*, Ren, Z.-P., Wu, Z.-P., Wu, X.-S., Hao, Y.-Q., and Wei, Y., 2020, The Astrophysical Journal Letters, 895(2), L43
32. Temperature variability in Titan’s upper atmosphere: The role of wave dissipation, Wang, X., Lian, Y., Cui, J.*, Richardson, M., Wu, Z.-P., and Li, J., 2020, Journal of Geophysical Research - Planets, 125(6), e06163
33. Photoelectrons as a tracer of planetary atmospheric composition: Application to CO on Mars, Wu, X.-S., Cui, J.*, Cao, Y.-T., He, Z.-G., He, F., and Wei, Y., 2020, Journal of Geophysical Research – Planets, 125(7), e2020JE006441
34. Solar and magnetic control of minor ion peaks in the dayside Martian ionosphere, Huang, J.-P., Cui, J.*, Hao, Y.-Q., Guo, J.-P., Wu, X.-S., Niu, D.-D., and Wei, Y., 2020, Journal of Geophysical Research – Space Physics, 125, e2020JA028254
35. Monte Carlo calculations of helium escape on Mars via energy transfer from hot oxygen atoms, Gu, H., Cui, J.*, Niu, D.-D., He, Z.-G., and Li, K., 2020, The Astrophysical Journal, 902, 2
36. A survey of photoelectrons on the nightside of Mars, Cao, Y.-T., Cui, J.*, Wu, X.-S., Niu, D.-D., Lai, H.-R., Ni, B.-B., Luo, Q., J. Yu, and Wei, Y., 2021, Geophysical Research Letters, 48(2), e2020GL089998
37. Species dependent response of the Martian ionosphere to the 2018 global dust storm, Niu, D.-D., Cui, J.*, Wu, S.-Q., Gu, H., Cao, Y.-T., Wu, Z.-P., Wu, X.-S., Zhong, J.-H., Wu, M.-Y., Wei, Y., and Zhang, T.-L., 2021, Journal of Geophysical Research - Planets, 126(2), e2020JE006679
38. Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms, Gu, H., Cui, J.*, Niu, D.-D., and Yu, J., 2021, Monthly Notices of the Royal Astronomical Society, 501(2), 2394-2402
39. In situ heating of the nightside Martian upper atmosphere and ionosphere: The role of Solar Wind electron precipitation, Niu, D.-D., Cui, J.*, Gu, H., Wu, X.-S., Cao, Y.-T., Dai, L.-K., Wu, M.-Y., Zhang, T.-L., Rong, Z.-J., and Wei, Y., 2021, The Astrophysical Journal, 909(2), 108
40. Non-thermal escape from Triton’s dayside atmosphere driven by chemistry, Gu, H., Cui, J.*, Niu, D.-D., Wu, X.-S., He, F., and Wei, Y., 2021, Astronomy and Astrophysics, 650, AA130
41. Compositional variation of the dayside Martian ionosphere: Inference from photochemical equilibrium computations, Wu, X.-S., Cui, J.*, Niu, D.-D., Ren, Z.-P., and Wei, Y., 2021, The Astrophysical Journal, 923(1), 29
42. Present-day atomic hydrogen escape on Mars and its variability, Cui, J.*, Gu, H., and Huang, X., 2022, Scientia Sinica Physics, Mechanica & Astronomica, 52(3), 239502
43. Wind-enhanced hydrogen escape on Mars, Gu, H., Cui, J.*, Huang, X., and Sun, M.-Y., 2022, Geophysical Research Letters, 49(10), e2022GL098312
44. Characteristic timescales for the dayside Martian ionosphere: Chemistry, diffusion, and magnetization, Cao, Y.-T., Cui, J.*, Liang, W.-J., Wu, X.-S., Wu, S.-Q., and Lu, H.-Y., 2023, The Astronomical Journal, 166, 264
45. Disentangling photoelectrons and penetrating solar wind electrons in the dayside Martian upper atmosphere, Cao, Y.-T., Cui, J.*, Gu, H., Wu, X.-S., Liang, W.-J., and Lu, H.-Y., 2023, Journal of Geophysical Research - Planets, 128(12), e2023JE008180