Journal Club

2023年6月15日14:00-15:00在A218会议室进行了本学期第12次的Journal Club,由吴晓涵同学做文献阅读分享报告。具体分享文献信息如下:

[1]Duan, A., Jiang, C., He, W., Feng, X., Zou, P., and Cui, J., “A Study of Pre-flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes”, <i>The Astrophysical Journal</i>, vol. 884, no. 1, 2019. doi:10.3847/1538-4357/ab3e33.
[2]Jiang, C., Feng, X., Liu, R. et al. A fundamental mechanism of solar eruption initiation. Nat Astron 5, 1126–1138 (2021). https://doi.org/10.1038/s41550-021-01414-z


2023年6月8日14:00-15:00在A218会议室进行了本学期第11次的Journal Club,由韩浩同学和宋星燕同学做文献阅读分享报告。具体分享文献信息如下:

韩浩:
[1] Cullens, C. Y., England, S. L., Immel, T. J., Maute, A., Harding, B. J., Triplett, C. C., et al. (2022). Seasonal variations of medium-scale waves observed by ICON-MIGHTI. Geophysical Research Letters, 49, e2022GL099383. https://doi.org/10.1029/2022GL099383. 
[2] Azeem, I., J. Yue, L. Hoffmann, S. D. Miller,W. C. Straka III, and G. Crowley (2015), Multisensor profiling of a concentricgravity wave event propagating from thetroposphere to the ionosphere, Geophysical Research Letters, 42, 7874–7880, doi:10.1002/2015GL065903.
宋星燕:
[1] Yokoyama, T., H. Shinagawa, and H. Jin (2014), Nonlinear growth,   bifurcation and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model,J.   Geophys.Res. SpacePhysics, 119, 10474-10482, doi: 10.1002/2014 ja020708.
[2] Woodman, R. F., and La Hoz, C. (1976), Radar observations of F region equatorial irregularities, J. Geophys. Res.,  81 (31), 5447-5466, doi: 10.1029 / JA081i031p05447.
[3] Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982), Nonlinear equatorial spread F:  The effect of neutral winds and background Pedersen conductivity, J. Geophys. Res., 87( A1), 151– 166,  Doi: 10.1029 / JA087iA01p00151.
[4] Anderson, D.N. and Mendillo, M. (1983),  Ionospheric conditions affecting the evolution of equatorial plasma depletions. Geophys. Res. Lett., 10:  The 541-544. https://doi.org/10.1029/GL010i007p00541.
[5] Kelley, M. C., Makela, J. J., Paxton, L. J., Kamalabadi, F., Comberiate, J. M., and Kil, H. (2003),  The first coordinated ground- and space-based optical observations of equatorial plasma bubbles, Geophys. Res. Lett.,  30, 1766, doi: 10.1029/2003 gl017301, 14.
[6] Aa, E., Zou, S., Eastes, R., Karan, D. K., Zhang, S.-R., Erickson, P. J., & Coster,  A. J. (2020). Coordinated ground-based and space-based observations of equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 125. E2019JA027569. https://doi.org/10.1029/2019JA027569.
[7] Sun, L., J. Xu, W. Wang, W. Yuan, Q. Li,and C. Jiang (2016),   A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China,  J. Geophys.Res. Space Physics, 121, 11495-11517, doi: 10.1002/2016 ja022950.


2023年6月1日14:00-15:00在A218会议室进行了本学期第10次的Journal Club,由倪洋馨同学和杨涵钊同学做文献阅读分享报告。具体分享文献信息如下:

倪洋馨:
[1] Bhardwaj, Anil and Marykutty Michael. “Monte Carlo model for electron degradation in SO2 gas: Cross sections, yield spectra, and efficiencies.” Journal of Geophysical Research 104 (1999): 24713-24728
[2] Bhardwaj, Anil and Sonal Jain. “Monte Carlo model of electron energy degradation in a CO2 atmosphere.” Journal of Geophysical Research 114 (2009): 1309
Bhardwaj, Anil and Vrinda Mukundan. “Monte Carlo model for electron degradation in methane gas.” Planetary and Space Science 111 (2015): 34-43
[4] Mukundan, Vrinda, and Anil Bhardwaj. “Monte Carlo model for electron degradation in xenon gas.” Proceedings. Mathematical, physical, and engineering sciences vol. 472,2187 (2016): 20150727.

杨涵钊:
[1]. Li, H.T., Cheng, X., Guo, J.H., Yan, X.L., Wang, L.F., Zhong, Z., Li, C., Ding, M.D., 2022. Growth of a filament channel by intermittent small-scale magnetic reconnection. A&A 663, A127. https://doi.org/10.1051/0004-6361/202243115


2023年5月25日14:00-15:00在A218会议室进行了本学期第9次的Journal Club,由廖舒欣同学和丁香玲同学做文献阅读分享报告。具体分享文献信息如下:

廖舒欣:
[1] Withers, P. (2023).  Troubles in Mars ionosphere modeling. Journal of Geophysical Research: Space Physics,  128, e2022JA031227. https://doi.org/10.1029/2022JA031227
[2] Xu, S., Thiemann, E., Mitchell, D., Eparvier, F., Pawlowski, D., Benna, M., et al. (2018). Observations and modeling of the Mars low-altitude ionospheric response to the 10 September 2017 X-class solar flare. Geophysical Research Letters, 45(15), 7382–7390. https://doi.org/10.1029/2018GL078524
[3] Mukundan, V., Thampi, S. V., Bhardwaj, A., & Krishnaprasad, C. (2020). The dayside ionosphere of Mars: Comparing a one-dimensional photo- chemical model with MAVEN Deep Dip campaign observations. Icarus, 337, 113502. https://doi.org/10.1016/j.icarus.2019.113502
[4] Stone, S. W., Yelle, R. V., Benna, M., Lo, D. Y., Elrod, M. K., & Mahaffy, P. R. (2020). Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370 (6518), 824–831. https://doi.org/10.1126/science.aba5229
[5] Yoshida, N., Terada, N., Nakagawa, H., Brain, D. A., Sakai, S., Nakamura, Y., et al. (2021). Seasonal and dust-related variations in the dayside thermospheric and ionospheric compositions of Mars observed by MAVEN/NGIMS. Journal of Geophysical Research, 126(11), e06926. https://doi.org/10.1029/2021JE006926 [6] Hensley, K., Withers, P., & Thiemann, E. (2022). Composition of Mars’s dayside ionosphere under changing solar irradiance conditions. Journal of Geophysical Research, 127(12), e2022JA030998. https://doi.org/10.1029/2022JA030998
[7] Mayyasi, M., Narvaez, C., Benna, M., Elrod, M., & Mahaffy, P. (2019). Ion-neutral coupling in the upper atmosphere of Mars: A dominant driver of topside ionospheric structure. Journal of Geophysical Research, 124(5), 3786–3798. https://doi.org/10.1029/2019JA026481
[8] Fox, J. L., Benna, M., McFadden, J. P., Jakosky, B. M., & MAVEN NGIMS Team. (2021). Rate coefficients for the reactions of CO2+ with O: Lessons from MAVEN at Mars. Icarus, 358, 114186. https://doi.org/10.1016/j.icarus.2020.114186
丁香玲:
[1] Bortnik J ,  Chen L ,  Li W , et al. Modeling the wave power distribution and characteristics of plasmaspheric hiss[J]. Journal of Geophysical Research Space Physics, 2011, 116(A12).
[2] Carpenter D L ,  Anderson R R . an isee/whistler model of equatorial electron density in the magneto sphere[J].  2018.
[3] Kotova G ,  Verigin M ,  Lemaire J , et al. Experimental Study of the Plasmasphere Boundary Layer Using MAGION 5 Data[J]. Journal of Geophysical Research: Space Physics, 2018, 123(2):1251-1259.
[4] Lemaire J F ,  Pierrard V . Comparison between two theoretical mechanisms for the formation of the plasmapause and relevant observations[J]. Geomagnetism and Aeronomy, 2008, 48(5):553-570.
[5] Lunjin, Chen, Jacob, et al. Modeling the properties of plasmaspheric hiss: 2. Dependence on the plasma density distribution[J]. Journal of Geophysical Research Space Physics, 2012.


2023年5月11日14:00-15:00在A218会议室进行了本学期第8次的Journal Club,由梁文骏同学和黄旭同学做文献阅读分享报告。具体分享文献信息如下:

梁文骏:
[1] Withers, P.; Felici, M.; Hensley, K.; Mendillo, M.; Barbinis, E.; Kahan, D.; Oudrhiri, K.; Girazian, Z. The ionosphere of Mars from solar minimum to solar maximum: Dayside electron densities from MAVEN and Mars Global Surveyor radio occultations Icarus 2023, 393.
[2] Song, Y.; Lu, H.; Cao, J.; Li, S.; Yu, Y.; Wang, S.; Ge, Y.; Zhang, X.; Zhou, C.; Wang, J. Effects of Force in the Martian Plasma Environment With Solar Wind Dynamic Pressure Enhancement Journal of Geophysical Research: Space Physics 2023, 128, (3).
[3] Gramapurohit, P. D.; Rao, N. V.; Yaswanth, C.; Prasad, D. S. V. V. D. Energy dependent response of the dayside Martian ionospheric electrons to solar forcing Icarus 2023, 393.
[4] Ram, L.; Rout, D.; Rathi, R.; Mondal, S.; Sarkhel, S.; Halekas, J. A Comparison of the Impacts of CMEs and CIRs on the Martian Dayside and Nightside Ionospheric Species Journal of Geophysical Research: Planets 2023, 128, (4).
黄旭:
[1] Carnielli, G., Galand, M., Leblanc, F., Leclercq, L., Modolo, R., Beth, A., ... & Jia, X. (2019). First 3D test particle model of Ganymede's ionosphere. Icarus, 330, 42-59.
[2] Carnielli, G., Galand, M., Leblanc, F., Modolo, R., Beth, A., & Jia, X. (2020). Simulations of ion sputtering at Ganymede. Icarus, 351, 113918.


2023年5月4日14:00-15:00在A218会议室进行了本学期第7次的Journal Club,由刘晓蔓同学和易思杨同学做文献阅读分享报告。具体分享文献信息如下:

刘晓蔓:
[1].Li, J., Ma, Q., Bortnik, J., Li, W., An, X.,Reeves, G. D., et al. (2019). Parallel acceleration of suprathermal electrons caused by whistler‐mode hiss waves.Geophysical Research Letters,46.https://doi.org/10.1029/2019GL085562
[2].Yu, J., Li, L. Y., Cao, J. B., Chen, L., Wang, J., & Yang, J. (2017). Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. Journal of Geophysical Research: Space Physics, 122(4), 4156–4167. https://doi.org/10.1002/2016JA023372

易思杨:
[1] Ni, B., Summers, D., Xiang, Z., Dou, X., Tsurutani, B. T., Meredith, N. P., et al. (2023). Unique banded structures of plasmaspheric hiss waves in the Earth's magnetosphere. Journal of Geophysical Research: Space Physics, 128, e2023JA031325. https://doi.org/10.1029/2023JA031325
[2] Liu, N., Su, Z., Gao, Z., Zheng, H., Wang, Y., Wang, S. et al. (2020). Comprehensive observations of substorm-enhanced plasmaspheric hiss generation, propagation, and dissipation. Geophysical Research Letters, 47, e2019GL086040. https://doi.org/10.1029/2019GL086040


2023年4月27日14:00-15:00在A218会议室进行了本学期第6次的Journal Club,由杨茜同学、谢熠同学和区焯亮同学做文献阅读分享报告。具体分享文献信息如下:

杨茜:[1]Dandouras, I.(2021).Ion outflow and escape in the terrestrial magnetosphere:Cluster advancesJournal of Geophysical R esearch SpacePhysicshttps//drg/101029/2021JA029753
[2]Zhao.(2020).Factors controlling O+and H+ outflow in the cusp during a geomagnetic storm: FAST/TEAMS observations Geophysical Research Letters46e2020GL086975https//doirg/101029/2020GL086975
谢熠:[1]Chen, R., Gao, X., Lu, Q., Chen, L., Tsurutani, B. T., Li, W., et al. (2021).In situ observations of whistler-mode chorus waves guided by density ducts. Journal of Geophysical Research: Space Physics, 126, e2020JA028814. https://doi.org/10.1029/2020JA028814
[2]Ke, Y., Chen, L., Gao, X., Lu, Q.,Wang, X., Chen, R., et al. (2021).Whistler-mode waves trapped by density irregularities in the Earth's magnetosphere. Geophysical Research Letters, 48, e2020GL092305. https://doi.org/10.1029/2020GL092305
区焯亮:[1] Wahiduzzaman M ,  Yeasmin A ,  Luo J J , et al. Statistical Approach to Observe the Atmospheric Density Variations Using Swarm Satellite Data[J]. Atmosphere, 2020, 11(11).
[2] Bussy-Virat C D ,  Ridley A J . Estimation of the thermospheric density using ephemerides of the CYGNSS and Swarm constellations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021:105687.


2023年4月20日14:00-15:00在A218会议室进行了本学期第5次的Journal Club,由陈佳雯同学、杜文宇同学和孙铭阳同学做文献阅读分享报告。具体分享文献信息如下:

陈佳雯:
[1]Cai, X., et al. (2022), Hemispherically Asymmetric Evolution of Nighttime Ionospheric Equatorial Ionization Anomaly in the American Longitude Sector, Journal of Geophysical Research: Space Physics, 127(11). https://doi.org/10.1029/2022ja030706
[2]Eastes, R. W., et al. (2023), GOLD Observations of Longitudinal Variations in the Nighttime Equatorial Ionization Anomaly (EIA) Crests' Latitudes, Journal of Geophysical Research: Space Physics, 128(4). https://doi.org/10.1029/2022ja031007
[3]Eccles, J. V., et al. (2015), Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low‐latitude ionosphere, Journal of Geophysical Research: Space Physics, 120(6), 4950-4970. https://doi.org/10.1002/2014ja020664
[4]Fejer, B. G., et al. (1991), Average vertical and zonal F region plasma drifts over Jicamarca, Journal of Geophysical Research: Space Physics, 96(A8), 13901-13906. https://doi.org/10.1029/91ja01171
[5]Kumar, A., et al. (2022), Solar Flux Dependence of Post‐Sunset Enhancement in Vertical Total Electron Content Over the Crest Region of Equatorial Ionization Anomaly, Journal of Geophysical Research: Space Physics, 127(5). https://doi.org/10.1029/2021ja030156
[6]Liu, H., et al. (2007), Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP, Journal of Geophysical Research: Space Physics, 112(A11). https://doi.org/10.1029/2007ja012616
杜文宇:
[1]Foster, J. C., & Erickson, P. J. (2013). Ionospheric superstorms: Polarization terminator effects in the Atlantic sector. Journal of Atmospheric and Solar-Terrestrial Physics, 103, 147–156. https://doi.org/10.1016/j.jastp.2013.04.001
[2]Chartier, A. T., Datta-Barua, S., McDonald, S. E., Bust, G. S., Tate, J., Goncharenko, L. P., et al. (2021). Night-time ionospheric localized enhancements (NILE) observed in North America following geomagnetic disturbances. Journal of Geophysical Research: Space Physics, 126, e2021JA029324. https://doi.org/10.1029/2021JA029324
孙铭阳:
[1]Yiğit, E., Medvedev, A. S., Benna, M., & Jakosky, B. M. (2021). Dust storm enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implication for atmospheric escape. Geophysical Research Letters, 48, e2020GL092095. https://doi.org/10.1029/2020GL092095
[2]Erdal Yiğit , Martian water escape and internal waves. Science, 374, 1323-1324(2021). https://doi.org/10.1126/science.abg5893


2023年4月6日14:00-15:00在A218会议室进行了本学期第4次的Journal Club,由罗巧文同学和袁艺同学做文献阅读分享报告。具体分享文献信息如下:

邢耀宇:
[1]Liu R, Kliem B, Titov V S, et al. Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist[J]. The Astrophysical Journal, 2016, 818(2): 148.
唐燕燕:
[1]Zhang SR, Cnossen I, Laštovička J, Elias AG,Yue X, Jacobi C, Yue J, Wang W, Qian L and Goncharenko L, Long-term geospace climate monitoring.Front. Astron. Space Sci. 
2023,10:1139230.doi:10.3389/fspas.2023.1139230
[2]Laštovička, J. The best solar activity proxy for long-term ionospheric investigations. Adv. Space Res. 2021, 68, 2354–2360. https://doi.org/10.1016/j.asr.2021.06.032
[3]Lastovicka, J. Is the Relation Between Ionospheric Parameters and Solar Proxies Stable? Geophys. Res. Lett. 2019, 46, 14208–14213. https://doi.org/10.1029/2019GL085033
[4]Lastovicka, J.; Urbar, J.; Kozubek, M. Long-term trends in the total electron content. Geophys. Res. Lett. 2017, 44, 8168–8172. https://doi.org/10.1002/2017GL075063
[5]Laštovička, J. A review of recent progress in trends in the upper atmosphere. J. Atmos. Solar-Terr. Phys. 2017, 163, 2–13. https://doi.org/10.1016/j.jastp.2017.03.009
[6]Lean, J. L., J. T. Emmert, J. M. Picone, and R. R. Meier (2011), Global and regional trends in ionospheric total electron content, J. Geophys. Res., 116, A00H04, doi:10.1029/2010JA016378.


2023年3月30日14:00-15:00在A218会议室进行了本学期第3次的Journal Club,由罗巧文同学和袁艺同学做文献阅读分享报告。具体分享文献信息如下:

罗巧文:
[1]Kasper, J. C., (2019) Alfvénic velocity spikes and rotational flows in the near-Sun solar wind, Nature, vol. 576, no. 7786, pp. 228–231,. doi:10.1038/s41586-019-1813-z.
[2]Matteini, L., T. S. Horbury, M. Neugebauer, and B. E. Goldstein, (2014), Dependence of solar wind speed on the local magnetic field orientation: Role of Alfvénic fluctua_x0002_tions, Geophys. Res. Lett., 41, 259–265, doi:10.1002/2013GL058482..HU Q, SONNERUP B U. Reconstruction of magnetic clouds in the solar wind: Orientations and configurations[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A7): SSH-10.
[3]Schwadron, N. A. and McComas, D. J., (2021)Switchbacks Explained: Super-Parker Fields—The Other Side of the Sub-Parker Spiral, The Astrophysical Journal, vol. 909, no. 1, . doi:10.3847/1538-4357/abd4e6.
[4]Mozer, F. S., (2020) Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma, The Astrophysical Journal Supplement Series, vol. 246, no. 2. doi:10.3847/1538-4365/ab7196.
[5]Farrell, W. M., MacDowall, R. J., Gruesbeck, J. R., Bale, S. D., and Kasper, J. C., (2020) Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis, The Astrophysical Journal Supplement Series, vol. 249, no. 2. doi:10.3847/1538-4365/ab9eba.
[6]Woolley, T., (2020) Proton core behaviour inside magnetic field switchbacks, <i>Monthly Notices of the Royal Astronomical Society</i>, vol. 498, no. 4, pp. 5524–5531. doi:10.1093/mnras/staa2770.
[7]Verniero, J. L., (2020) Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves, The Astrophysical Journal Supplement Series, vol. 248, no. 1. doi:10.3847/1538-4365/ab86af.
[8]Woodham, L. D., (2021) Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere, Astronomy and Astrophysics, vol. 650. doi:10.1051/0004-6361/202039415.
[9]Liu, R., (2022). Density compressions at magnetic switchbacks associated with fast plasma: A superposed epoch analysis. Journal of Geophysical Research: Space Physics, 127, e2022JA030382. doi.org/10.1029/2022JA030382
袁艺:
[1]N. Omidi, D.G. Sibeck, Formation of hot flow anomalies and solitary shocks. J. Geophys. Res. Space Phys.112(A11), 1203 (2007). https://doi.org/10.1029/2006JA011663
[2]S.J. Schwartz, G. Paschmann, N. Sckopke, T.M. Bauer, M. Dunlop, A.N. Fazakerley, M.F. Thomsen, Conditions for the formation of hot flow anomalies at Earth’s bow shock. J. Geophys. Res. Space Phys. 105,12639–12650 (2000). https://doi.org/10.1029/1999JA000320
[3]G. Facskó, Z. Németh, G. Erd˝os, A. Kis, I. Dandouras, A global study of hot flow anomalies using Cluster multi-spacecraft measurements. Ann. Geophys. 27, 2057–2076 (2009)
[4]V.M. Uritsky, J.A. Slavin, S.A. Boardsen, T. Sundberg, J.M. Raines, D.J. Gershman, G. Collinson, D. Sibeck,G.V. Khazanov, B.J. Anderson, H. Korth, Active current sheets and candidate hot flow anomalies upstream of Mercury’s bow shock. J. Geophys. Res. Space Phys. 119, 853–876 (2014). https://doi.org/10.1002/2013JA019052. arXiv:1306.5001
[5]G.A. Collinson, D.G. Sibeck, A. Masters, N. Shane, T.L. Zhang, A. Fedorov, S. Barabash, A.J. Coates, T.E.Moore, J.A. Slavin, V.M. Uritsky, S. Boardsen, M. Sarantos, A survey of hot flow anomalies at Venus.J. Geophys. Res. Space Phys. 119, 978–991 (2014).https://doi.org/10.1002/2013JA018863
[6]M. Øieroset, D.L. Mitchell, T.D. Phan, R.P. Lin, M.H. Acuña, Hot diamagnetic cavities upstream of the Martian bow shock. Geophys. Res. Lett. 28, 887–890 (2001). https://doi.org/10.1029/2000GL012289
[7]P.W. Valek, M.F. Thomsen, F. Allegrini, F. Bagenal, S. Bolton, J. Connerney, R.W. Ebert, R. Gladstone, W.S.Kurth, S. Levin, P. Louarn, B. Mauk, D.J. McComas, C. Pollock, M. Reno, J.R. Szalay, S. Weidner, R.J.Wilson, Hot flow anomaly observed at Jupiter's bow shock. Geophys. Res. Lett. 44, 8107–8112 (2017).https://doi.org/10.1002/2017GL073175
[8]A. Masters, C.S. Arridge, M.K. Dougherty, C. Bertucci, L. Billingham, S.J. Schwartz, C.M. Jackman, Z. Bebesi, A.J. Coates, M.F. Thomsen, Cassini encounters with hot flow anomaly-like phenomena at Saturn's bow shock. Geophys. Res. Lett. 35, 2202–2206 (2008). https://doi.org/10.1029/2007GL032371
[9]J. Giacalone, D. Burgess, Interaction between inclined current sheets and the heliospheric termination shock. Geophys. Res. Lett. 37, L19104 (2010). https://doi.org/10.1029/2010GL044656


2023年3月23日14:00-14:30在A218会议室进行了本学期第2次的Journal Club,由程岳铭同学做文献阅读分享报告。具体分享文献信息如下:

[1]Fang, X., Forbes, J. M., Gan, Q., Liu, G., Thaller, S., Bougher, S., et al. (2021). Tidal effects on the longitudinal structures of the Martian thermosphere and topside ionosphere observed by MAVEN. Journal of Geophysical Research: Space Physics, 
126, e2020JA028562. https://doi.org/10.1029/2020JA028562
[2]Wang, L., Fritts, D., & Tolson, R. (2006). Nonmigrating tides inferred from the mars odyssey and mars global surveyor aerobraking data. Geophysical Research Letters, 33, L23201. https://doi.org/10.1029/2006GL027753


2023年3月16日14:00-14:30在A218会议室进行了本学期第1次的Journal Club,由闫涛同学做文献阅读分享报告。具体分享文献信息如下:

[1] Khurana K K, Pappalardo R T, Murphy N, et al. The origin of Ganymede's polar caps[J]. Icarus, 2007, 191(1): 193-202.
[2] Hansen C J, Bolton S, Sulaiman A H, et al. Juno's close encounter with Ganymede—an overview[J]. Geophysical Research Letters, 2022, 49(23): e2022GL099285.
[3] Ravine M A, Hansen C J, Collins G C, et al. Ganymede observations by JunoCam on Juno Perijove 34[J]. Geophysical Research Letters, 2022, 49(23): e2022GL099211.
[4] Molyneux P M, Greathouse T K, Gladstone G R, et al. Ganymede's UV Reflectance From Juno‐UVS Data[J]. Geophysical Research Letters, 2022, 49(23): e2022GL099532.
[5] Becker H N, Florence M M, Brennan M J, et al. Surface Features of Ganymede Revealed in Jupiter‐Shine by Juno’s Stellar Reference Unit[J]. Geophysical Research Letters, 2022, 49(23): e2022GL099139.
[6] Kurth W S, Sulaiman A H, Hospodarsky G B, et al. Juno plasma wave observations at Ganymede[J]. Geophysical research letters, 2022: e2022GL098591.
Weber T, Moore K, Connerney J, et al. Updated spherical harmonic magnetic field moments of Ganymede from the Juno flyby[J]. Geophysical Research Letters, 2022, 49(23): e2022GL098633.
[7] Greathouse T K, Gladstone G R, Molyneux P M, et al. UVS observations of Ganymede's aurora during Juno orbits 34 and 35[J]. Geophysical Research Letters, 2022, 49(23): e2022GL099794.
[8] Kollmann P, Clark G, Paranicas C, et al. Ganymede's radiation cavity and radiation belts[J]. Geophysical Research Letters, 2022, 49(23): e2022GL098474.


2022年12月27日14:20-15:20在A218会议室进行了本学期第14次的Journal Club,由李宗烨和区焯亮同学做文献阅读分享报告。具体分享文献信息如下:

区焯亮
[1] E. Iorfida, I. Daras, R. Haagmans, and A. Strømme, ‘Swarm A and C Accelerometers: DATA VALIDATION AND SCIENTIFIC INTERPRETATION’, Earth Space Sci., Nov. 2022, doi: 10.1029/2022EA002458.
李宗烨
[1]Bhardwaj, A., Dhanya, M.B., Alok, A. et al. A new view on the solar wind interaction with the Moon. Geosci. Lett. 2, 10 (2015). https://doi.org/10.1186/s40562-015-0027-y

[2]F. Allegrini, M.A. Dayeh, M.I. Desai, H.O. Funsten, S.A. Fuselier, P.H. Janzen, D.J. McComas, E. Möbius, D.B. Reisenfeld, D.F. Rodríguez M., N. Schwadron, P. Wurz,Lunar energetic neutral atom (ENA) spectra measured by the interstellar boundary explorer (IBEX),Planetary and Space Science,https://doi.org/10.1016/j.pss.2013.06.014.

[3]Harada, Y., et al. (2014), Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaan-1/Sub-keV Atom Reflecting Analyzer instrument, J. Geophys. Res. Space Physics, 119, 3573– 3584, doi:10.1002/2013JA019682.

[4]Schaufelberger, A., Wurz, P., Barabash, S., Wieser, M., Futaana, Y., Holmström, M., Bhardwaj, A., Dhanya, M. B., Sridharan, R., and Asamura, K. (2011), Scattering function for energetic neutral hydrogen atoms off the lunar surface, Geophys. Res. Lett., 38, L22202, doi:10.1029/2011GL049362.


2022年12月20日14:20-15:20在A218会议室进行了本学期第13次的Journal Club,由吴晓涵和杨涵钊同学做文献阅读分享报告。具体分享文献信息如下:

吴晓涵:[1] Gupta, M., Thalmann, J. K., and Veronig, A. M., “Magnetic helicity and energy budget around large confined and eruptive solar flares”, <i>Astronomy and Astrophysics</i>, vol. 653, 2021. doi:10.1051/0004-6361/202140591.  
[2]Tziotziou, K., Georgoulis, M. K., and Raouafi, N.-E., “The Magnetic Energy-Helicity Diagram of Solar Active Regions”, <i>The Astrophysical Journal</i>, vol. 759, no. 1, 2012. doi:10.1088/2041-8205/759/1/L4.  
 [3]Park, S.-H., “The Variation of Relative Magnetic Helicity around Major Flares”, <i>The Astrophysical Journal</i>, vol. 686, no. 2, pp. 1397–1403, 2008. doi:10.1086/591117.      

杨涵钊:[1] Kliem, B., Lee, J., Liu, R., White, S.M., Liu, C., &Masuda, S. Nonequilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection. The Astrophysical Journal, 909, 91 (2021) https://doi.org/10.3847/1538-4357/abda37
[2] Mitra, P.K., Joshi, B. &Prasad, A. Identification of Pre-flare Processes and Their Possible Role in Driving a Large-scale Flux Rope Eruption with Complex M-class Flare in the Active Region NOAA 12371. Sol Phys 295, 29 (2020). https://doi.org/10.1007/s11207-020-1596-2


2022年12月13日14:20-15:20在A218会议室进行了本学期第12次的Journal Club,由刘晓蔓和倪洋馨同学做文献阅读分享报告。具体分享文献信息如下:

刘晓蔓:[1] Zhu, H., Liu, X., & Chen, L. (2019). Triggered plasmaspheric hiss: Rising tone structures. Geophysical Research Letters, 46, 5034–5044. https://doi.org/10.1029/2019GL082688
[2]  Green, A., Li, W., Ma, Q., Shen, X.‐C., Bortnik, J., & Hospodarsky, G. B. (2020). Properties of lightning generated whistlers based on Van Allen Probes observations and their global effects on radiation belt electron loss. Geophysical Research Letters, 47,e2020GL089584. https://doi.org/10.1029/2020GL089584

倪洋馨:[1] Johnson, R.E., D. Schnellenberger, and M.C. Wong, 2000: The sputtering of an oxygen thermosphere by energetic O+. J. Geophys. Res., 105, no. E1, -1670, doi:10.1029/1999JE001058
[2] Shematovich V I , Kalinicheva E S . Oxygen Atom Escape from the Martian Atmosphere during Proton Auroral Events[J]. Astronomy Reports, 2020, 64(7):628-635
[3] Shematovich, V.I., Bisikalo, D.V. Kinetic Calculations of the Charge Exchange Efficiency for Solar Wind Protons in the Extended Martian Hydrogen Corona. Astron. Rep. 64, 863–869 (2020). 


2022年12月6日14:20-15:20在A218会议室进行了本学期第11次的Journal Club,由易思杨和潘琳同学做文献阅读分享报告。具体分享文献信息如下:

易思杨:[1] Thorne, R., Church, S., and Gorney, D. (1979), On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause, J. Geophys. Res., 84( A9), 5241– 5247, doi:10.1029/JA084iA09p05241.

[2] Li, W., et al. (2013), An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons, Geophys. Res. Lett., 40, 3798– 3803, doi:10.1002/grl.50787.

[3] Chen, L., et al. (2014), Generation of unusually low frequency plasmaspheric hiss, Geophys. Res. Lett., 41, 5702– 5709, doi:10.1002/2014GL060628.

[4] Ni, B., et al. (2014), Resonant scattering of energetic electrons by unusual low-frequency hiss, Geophys. Res. Lett., 41, 1854– 1861, doi:10.1002/2014GL059389.

[5] Malaspina, D. M., Jaynes, A. N., Hospodarsky, G., Bortnik, J., Ergun, R. E., and Wygant, J. (2017), Statistical properties of low-frequency plasmaspheric hiss, J. Geophys. Res. Space Physics, 122, 8340– 8352, doi:10.1002/2017JA024328.

[6] Ma, Q., Li, W., Zhang, X. -J., Bortnik, J., Shen, X. -C., Connor, H. K., et al. (2021). Global survey of electron precipitation due to hiss waves in the Earth’s plasmasphere and plumes. Journal of Geophysical Research: Space Physics, 126, e2021JA029644. https://doi.org/10.1029/2021JA029644

[7] Maxworth, A. S., Gołkowski, M., Malaspina, D. M., & Jaynes, A. N. (2020). Raytracing study of source regions of whistler mode wave power distribution relative to the plasmapause. Journal of Geophysical Research: Space Physics, 125, e2019JA027154. https://doi.org/10.1029/2019JA027154
潘琳:Fargette N, Lavraud B, Rouillard A, et al. Magnetic increases with central current sheets: Observations with Parker Solar Probe[J]. Astronomy & Astrophysics, 2021, 650: A11.


2022年11月29日14:20-15:20在A218会议室进行了本学期第10次的Journal Club,由杜文宇和唐燕燕同学做文献阅读分享报告。具体分享文献信息如下:

杜文宇:[1] Xiong, C., Lühr, H., Sun, L., Luo, W., Park, J., & Hong, Y. (2019). Long-lasting latitudinal four-peak structure in the nighttime ionosphere observed by the Swarm constellation. Journal of Geophysical Research: Space Physics, 124, 9335– 9347. https://doi.org/10.1029/2019JA027096
[2] Cai, X., Qian, L., Wang, W., McInerney, J. M., Liu, H.-L., & Eastes, R. W. (2022). Investigation of the post-sunset extra electron density peak poleward of the equatorial ionization anomaly southern crest. Journal of Geophysical Research: Space Physics, 127, e2022JA030755. https://doi.org/10.1029/2022JA030755

唐燕燕:[1] Y. Han, L. Wang, W. Fu, H. Zhou, T. Li and R. Chen, "Machine Learning-Based Short-Term GPS TEC Forecasting During High Solar Activity and Magnetic Storm Periods," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 115-126, 2022, doi: 10.1109/JSTARS.2021.3132049.
[2] I. Srivani, G. Siva Vara Prasad and D. Venkata Ratnam, "A Deep Learning-Based Approach to Forecast Ionospheric Delays for GPS Signals," in IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 8, pp. 1180-1184, Aug. 2019, doi: 10.1109/LGRS.2019.2895112.


2022年11月22日14:20-15:20在A218会议室进行了本学期第9次的Journal Club,由梁文骏和吴诗琦同学做文献阅读分享报告。具体分享文献信息如下:

梁文骏:【1】Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. (2022). Neutral composition and horizontal variations of the Martian upper atmosphere from MAVEN NGIMS. Journal of Geophysical Research: Planets, 127, e2021JE007085. https://doi.org/10.1029/2021JE007085
【2】Le, H., Liu, L., Chen, Y., & Zhang, H. (2022). The north–south asymmetry of Martian ionosphere and thermosphere. Journal of Geophysical Research: Planets, 127, e2021JE007143. https://doi.org/10.1029/2021JE007143

吴诗琦:[1]Hanley, K. G., Fowler, C. M., McFadden, J. P., Mitchell, D. L., & Curry, S. (2022). MAVEN-STATIC observations of ion temperature and initial ion acceleration in the Martian ionosphere. Geophysical Research Letters, 49, e2022GL100182. https://doi.org/10.1029/2022GL100182 

[2]McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., et al. (2015). MAVEN suprathermal and thermal ion compost-ion (STATIC) instrument. Space Science Reviews, 195(1–4), 199–256. https://doi.org/10.1007/s11214-015-0175-6


[3]Hanley, K. G., Mcfadden, J. P., Mitchell, D. L., Fowler, C. M., Stone, S. W., Yelle, R. V., et al. (2021). In situ measurements of thermal ion temperature in the Martian ionosphere. Journal of Geophysical Research: Space Physics, 126(12). https://doi.org/10.1029/2021JA029531 

[4]Fowler, C. M., Mcfadden, J., Hanley, K. G., Mitchell, D. L., Curry, S., & Jakosky, B. (2022). In situ measurements of ion density in the Martian ionosphere: Underlying structure and variability observed by the MAVEN-STATIC instrument. Journal of Geophysical Research: Space Physics, 127(8), 1–31. https://doi.org/10.1029/2022JA030352

[5]Weber, T., Brain, D., Mitchell, D., Xu, S., Connerney, J., Halekas, J., & Al, W. E. T. (2017). Characterization of low-altitude nightside Martian pitch angle distributions. Journal of Geophysical Research: Space Physics, 122(10), 9777–9789. https://doi.org/10.1002/2017JA024491

[6]Adams, D., Xu, S., Mitchell, D. L., Lillis, R. L., Fillingim, M., Andersson, L., et al. (2018). Using magnetic topology to probe the sources of Mars’ nightside ionosphere. Geophysical Research Letters, 45(22), 12–190. https://doi.org/10.1029/2018GL080629


2022年11月15日14:20-15:20在A218会议室进行了本学期第8次的Journal Club,由孙伟钦和孙铭阳同学做文献阅读分享报告。具体分享文献信息如下:

孙伟钦:[1] Smith, P. H., and Hoffman, R. A. (1974), Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms, J. Geophys. Res., 79( 7), 966– 971, doi:10.1029/JA079i007p00966.
[2] Ejiri, M. (1978), Trajectory traces of charged particles in the magnetosphere, J. Geophys. Res., 83( A10), 4798– 4810, doi:10.1029/JA083iA10p04798.
[3] Ejiri, M., Hoffman, R., and Smith, P. H. (1980), Energetic particle penetrations into the inner magnetosphere, J. Geophys. Res., 85( A2), 653– 663, doi:10.1029/JA085iA02p00653.
[4] Shirai, H., Maezawa, K., Fujimoto, M., Mukai, T., Saito, Y., and Kaya, N. (1997), Monoenergetic ion drop-off in the inner magnetosphere, J. Geophys. Res., 102( A9), 19873– 19881, doi:10.1029/97JA01150.
[5] Ganushkina, Natalia Yu., Tuija I. Pulkkinen, Vladimir F. Bashkirov, Daniel N. Baker, and Xinlin Li. "Formation of Intense Nose Structures." Geophysical Research Letters 28, no. 3 (2001): 491-94. https://doi.org/https://doi.org/10.1029/2000GL011955. 
[6] Vallat, C., N. Ganushkina, I. Dandouras, C. P. Escoubet, M. G. G. T. Taylor, H. Laakso, A. Masson, et al. "Ion Multi-Nose Structures Observed by Cluster in the Inner Magnetosphere." Ann. Geophys. 25, no. 1 (2007): 171-90. https://doi.org/10.5194/angeo-25-171-2007. 
[7] Ferradas, C. P., Zhang, J.-C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., Skoug, R., and Funsten, H. (2016), Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet, Geophys. Res. Lett., 43, 11,484– 11,492, doi:10.1002/2016GL071359.
[8] Ferradas, C. P., Zhang, J.-C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., Skoug, R., and Funsten, H. (2016), Ion nose spectral structures observed by the Van Allen Probes, J. Geophys. Res. Space Physics, 121, 12,025– 12,046, doi:10.1002/2016JA022942.

孙铭阳:[1] J.A. Holmes, S.R. Lewis, M.R. Patel, M.S. Chaffin, E.M. Cangi, J. Deighan, N.M. Schneider, S. Aoki, A.A. Fedorova, D.M. Kass, A.C. Vandaele, Enhanced water loss from the martian atmosphere during a regional-scale dust storm and implications for long-term water loss, Earth and Planetary Science Letters, Volume 571, 2021, 117109, ISSN 0012-821X, https://doi.org/10.1016/j.epsl.2021.117109.

[2] Chaffin, M.S., Kass, D.M., Aoki, S. et al. Martian water loss to space enhanced by regional dust storms. Nat Astron 5, 1036–1042 (2021). https://doi.org/10.1038/s41550-021-01425-w


2022年11月8日14:20-15:20在A218会议室进行了本学期第7次的Journal Club,由黄旭和李子川同学做文献阅读分享报告。具体分享文献信息如下:
黄旭:
1. Cantor, B. A., James, P. B., Caplinger, M., & Wolff, M. J. 2001, J. Geophys. Res., 106, 23653
2. Chaffin, M. S., Kass, D. M., Aoki, S., et al. 2021, Nature Astronomy, 5, 1036
3. Fang, X., Ma, Y., Lee, Y., et al. 2020, Journal of Geophysical Research (Space Physics), 125, e26838
4. Fedorova, A., Montmessin, F., Korablev, O., et al. 2021, Journal of Geophysical Research (Planets), 126 (1), e2020JE006616
5. Lee, Y., Fang, X., Gacesa, M., et al. 2020, Journal of Geophysical Research (Space Physics), 125, e27115
6. Niu, D. D., Cui, J., Wu, S. Q., et al. 2021, Journal of Geophysical Research (Planets), 126, e06679
7. Qin, J., Zou, H., Lee, Y., et al. 2022, Journal of Geophysical Research (Planets), 127, e07297
8. Stone, S. W., Yelle, R. V., Benna, M., et al. 2020, Science, 370, 824
9. Zurek, R. W. 1982, Icarus, 50, 288
李子川:
[1]Shaposhnikov, D. S. , Medvedev, A. S. , Rodin, A. V. , Yiit, E. , & Hartogh, P. . (2022). Martian dust storms and gravity waves: disentangling water transport to the upper atmosphere. Journal of Geophysical Research: Planets,127. https://doi.org/10.1029/2021JE007102
[2]Slipski, M., Jakosky, B. M., Benna, M., Elrod, M., Mahaffffy, P., Kass, D., et al. (2018), Variability of Martian turbopause altitudes. Journal of Geophysical Research: Planets, 123. https://doi.org/10.1029/2018JE005704
[3]Jakosky, B. M., Slipski, M., Benna, M., Mahaffffy, P., Elrod, M., Yelle, R., et al. (2017). Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science, 355, 1408–1410. https://doi.org/10.1126/science.aai7721
[4]Mahaffy, P. R., M. Benna, M. Elrod, R. V. Yelle, S. W. Bougher, S. W. Stone, and B. M. Jakosky (2015), Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42, 8951–8957, doi:10.1002/2015GL065329


2022年11月1日14:20-15:20在A218会议室进行了本学期第6次的Journal Club,由谢熠和杨茜同学做文献阅读分享报告。具体分享文献信息如下:

谢熠:[1] Yue, C., Ma, Q., Jun, C.-W., Bortnik, J., Zong, Q., & Zhou, X., et al. (2020). The modulation of plasma and waves by background electron density irregularities in the inner magnetosphere. Geophysical Research Letters, 47, e2020GL088855. https://doi.org/10.1029/2020GL088855
[2] Liu, X., Gu, W., Xia, Z., Chen, L., & Horne, R. B. (2021). Frequency-dependent modulation of whistler-mode waves by density irregularities during the recovery phase of a geomagnetic storm. Geophysical Research Letters, 48, e2021GL093095. https://doi.org/10.1029/2021GL093095

杨茜:[1] Dandouras, I. (2021). Ion outflow and escape in the terrestrial magnetosphere: Cluster advances. Journal of Geophysical Research: Space Physics, 126, e2021JA029753. https://doi.org/10.1029/2021JA029753
[2] Hui Zhang(2022). A Highway for Atmospheric Ion Escape from Earth during the Impact of an Interplanetary Coronal Mass Ejection. The Astrophysical Journal, 937:4 (9pp). https://doi.org/10.3847/1538-4357/ac8a93


2022年10月25日14:20-15:20在A218会议室进行了本学期第5次的Journal Club,由邢耀宇同学做文献阅读分享报告。具体分享文献信息如下:

邢耀宇:[1]Joshi R, Mandrini C H, Chandra R, et al. Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption[J]. arXiv preprint arXiv:2206.00531, 2022.
[2]Joshi, N.C., Srivastava, A.K., Filippov, B., Uddin, W., Kayshap, P., Chandra, R.: 2013, A Study of a Failed Coronal Mass Ejection Core Associated with an Asymmetric Filament Eruption. Astrophys. J. 771(1), 65.


2022年10月18日14:20-15:20在A218会议室进行了本学期第4次的Journal Club,由丁香玲和廖舒欣同学做文献阅读分享报告。具体分享文献信息如下:

丁香玲:[1]Bortnik J, Thorne R M, Meredith N P. The unexpected origin of plasmaspheric hiss from discrete chorus emissions[J]. Nature, 2008, 452(7183): 62-66.
[2]Meredith N P, Horne R B, Clilverd M A, et al. Origins of plasmaspheric hiss[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A9).
[3]Santolík O, Kolmašová I, Pickett J S, et al. Multi‐Point Observation of Hiss Emerging From Lightning Whistlers[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029524.
[4]He Z, Yu J, Li K, et al. A comparative study on the distributions of incoherent and coherent plasmaspheric hiss[J]. Geophysical Research Letters, 2021, 48(7): e2021GL092902.

廖舒欣:[1] Fox J L, Johnson A S, Ard S G, et al. Photochemical determination of O densities in the Martian thermosphere: Effect of a revised rate coefficient[J]. Geophysical Research Letters, 2017, 44(16): 8099-8106. 
[2] Fox J L, Benna M, McFadden J P, et al. Rate coefficients for the reactions of CO2+ with O: Lessons from MAVEN at Mars[J]. Icarus, 2021, 358: 114186.


2022年10月11日14:20-15:20在A218会议室进行了本学期第3次的Journal Club,由韩浩和宋星燕同学做文献阅读分享报告。具体分享文献信息如下:

韩浩:[1] Yang H, Yang X, Zhang Z, et al. High-precision ionosphere monitoring using continuous measurements from BDS GEO satellites[J]. Sensors, 2018, 18(3): 714.
[2] Luo X, Lou Y, Gu S, et al. Local ionospheric plasma bubble revealed by BDS Geostationary Earth Orbit satellite observations[J]. GPS Solutions, 2021, 25(3): 1-10.
宋星燕:[1] Aa, E., Zou, S., & Liu, S. (2020). Statistical analysis of equatorial plasma irregularities retrieved from Swarm 2013–2019 observations. Journal of Geophysical Research: Space Physics, 125, e2019JA027022. https://doi.org/10.1029/2019JA027022
[2] Aa, E., Zou, S., Eastes, R., Karan, D. K., Zhang, S.-R., Erickson, P. J., & Coster, A. J. (2020). Coordinated ground-based and space-based observations of equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 125. e2019JA027569. https://doi.org/10.1029/2019JA027569


2022年9月27日19:00-20:00在A218会议室进行了本学期第2次的Journal Club,由闫涛和袁艺同学做文献阅读分享报告。具体分享文献信息如下:

闫涛:[1] Mcgrath M A ,  Jia X ,  Retherford K , et al. Aurora on Ganymede[J]. John Wiley & Sons, Ltd, 2013(5).
   [2] Marzok A ,  Schlegel S ,  Saur J , et al. Mapping the Brightness of Ganymede's Ultraviolet Aurora Using Hubble Space Telescope Observations[J]. Journal of geophysical research. Planets, 2022(127-6).
   [3]Darrell, F, Strobel, et al. Morphology of Ganymede's FUV auroral ovals[J]. Journal of Geophysical Research, A. Space Physics: JGR, 2017, 122(3):2855-2876.
   [4] Jia X ,  Kivelson M G . The Magnetosphere of Ganymede[M]. American Geophysical Union (AGU), 2021.

袁艺:[1] N. Omidi, S.H. Lee, D.G. Sibeck, D.L. Turner, T.Z. Liu, V. Angelopoulos, Formation and topology of foreshock bubbles. J. Geophys. Res. Space Phys. 125(9), e2020JA028058 (2020b). https://doi.org/10.1029/ 2020JA028058
  [2] D.L. Turner, N. Omidi, D.G. Sibeck, V. Angelopoulos, First observations of foreshock bubbles upstream of Earth’s bow shock: characteristics and comparisons to HFAs. J. Geophys. Res. Space Phys. 118, 1552–1570 (2013). https://doi.org/10.1002/jgra.50198
  [3] Z. Liu, D.L. Turner, V. Angelopoulos, N. Omidi, THEMIS observations of tangential discontinuity-driven foreshock bubbles. Geophys. Res. Lett. 42, 7860–7866 (2015). https://doi.org/10.1002/2015GL065842
  [4] C.P. Wang, X. Wang, T.Z. Liu, Y. Lin, A foreshock bubble driven by an IMF tangential discontinuity: 3D global hybrid simulation. Geophys. Res. Lett. 48(9), e2021GL093068 (2021). https://doi.org/10.1029/ 2021GL093068
  [5] T.Z. Liu, H. Hietala, V. Angelopoulos, D.L. Turner, Observations of a new foreshock region upstream of a foreshock bubble’s shock. Geophys. Res. Lett. 43, 4708–4715 (2016a). https://doi.org/10.1002/ 2016GL068984
  [6] T.Z. Liu, S. Lu, V. Angelopoulos, Y. Lin, X.Y. Wang, Ion acceleration inside foreshock transients. J. Geophys. Res. Space Phys. 123(1), 163–178 (2018). https://doi.org/10.1002/2017JA024838
  [7] N. Omidi, S.H. Lee, D.G. Sibeck, Ion acceleration by foreshock bubbles. J. Geophys. Res. Space Phys. 126(5), e2020JA028924 (2021). https://doi.org/10.1029/2020JA028924


2022年9月20日14:20-14:50在A218会议室进行了本学期第1次的Journal Club,由陈佳雯做文献阅读分享报告。具体分享文献信息如下:

[1]Aa, E., et al. (2022), Significant Ionospheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption, Space Weather, 20(7). 

[2]Astafyeva, E. (2019), Ionospheric Detection of Natural Hazards, Reviews of Geophysics, 57(4), 1265-1288. 

[3]Astafyeva, E., et al. (2022), The 15 January 2022 Hunga Tonga Eruption History as Inferred From Ionospheric Observations, Geophysical Research Letters, 49(10). 

[4]Harding, B. J., et al. (2022), Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON‐MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents, Geophysical Research Letters, 49(9). 

[5]Lin, J. T., et al. (2022), Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere After Hunga‐Tonga Volcano Eruptions, Geophysical Research Letters, 49(8).


2022.6.23下午4:30-5:00将在A218会议室进行本学期第18周的Journal Club,由程岳铭同学做文献阅读分享报告。具体分享文献信息如下:

[1] Steckiewicz, M., Garnier, P., Lillis, R., Toublanc, D., Leblanc, F., Mitchell, D. L., et al. (2019). Dawn/dusk asymmetry of the Martian UltraViolet terminator observed through suprathermal electron depletions. Journal of Geophysical Research: Space Physics, 124, 7283–7300. https://doi. org/10.1029/2018JA026336

[2] Steckiewicz, M., et al. (2017), Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations, J. Geophys. Res. Space Physics, 122, 857–873, doi:10.1002/2016JA023205

[3] Steckiewicz, M., et al. (2015), Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations, Geophys. Res. Lett., 42, 8877–8884, doi:10.1002/2015GL065257


2022.6.2下午4:30-5:30将在A218会议室进行本学期第16周的Journal Club,由丁香玲和廖舒欣同学做文献阅读分享报告。具体分享文献信息如下:

丁香玲:Ripoll, J.‐F., Farges, T., Malaspina, D.M., Lay, E. H., Cunningham, G. S., Hospodarsky, G. B., et al. (2020). Analysis of electric and magnetic
lightning‐generated wave amplitudes measured by the Van Allen Probes. Geophysical Research Letters, 47, e2020GL087503. https://doi.org/
10.1029/2020GL087503


廖舒欣:Vrinda Mukundan(2019). The dayside ionosphere of Mars: Comparing a one-dimensional photochemical model with MAVEN Deep Dip campaign observations. Icarus 337 (2020) 113502. https://doi.org/10.1016/j.icarus.2019.113502


2022.5.26下午4:30-5:30将在A218会议室进行本学期第15周的Journal Club,由邢耀宇和袁艺同学做文献阅读分享报告。具体分享文献信息如下:

邢耀宇:Xinkai Bian(2022). Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of
Current Sheet within a Sheared Magnetic Arcade. The Astrophysical Journal Letters, 925:L7 (8pp). https://doi.org/10.3847/2041-8213/ac4980


袁艺:[1] Gao, Xinliang , et al. "Electromagnetic Proton/Proton Instability and Its Implications for Ion Heating in the Extended Fast Solar Wind." Astrophysical Journal 764.1(2013):691-695.
[2] Yao, J. , et al. "The effects of beam proportion on electromagnetic proton/proton instability and associated ion heating: 2D hybrid simulation." Physics of Plasmas 27.2(2020):022901.


2022.5.19下午3:30-4:30将在A218会议室进行本学期第14周的Journal Club,由闫涛和吴诗琦同学做文献阅读分享报告。具体分享文献信息如下:

闫涛:介绍关于“Ganymede's magnetosphere”方面的综述。以下是参考文献:
[1] Dorelli, J. C. ,  Glocer, A. ,  Collinson, G. , & G Tóth. (2015). The role of the hall effect in the global structure and dynamics of planetary magnetospheres: ganymede as a case study. Dutton,.
[2] Duling, S. ,  Saur, J. , &  Wicht, J. . (2014). Consistent boundary conditions at nonconducting surfaces of planetary bodies: applications in a new ganymede mhd model. Journal of Geophysical Research: Space Physics, 119.
[3]G Tóth,  Jia, X. ,  Markidis, S. ,  Peng, I. B. ,  Chen, Y. , &  Daldorff, L. , et al. (2016). Extended magnetohydrodynamics with embedded particle-in-cell simulation of ganymede\"s magnetosphere. Journal of Geophysical Research Space Physics, 121(2), 1273-1293.
[4]Ip, & Wing-Huen. (2002). Resistive mhd simulations of ganymede’s magnetosphere 2. birkeland currents and particle energetics. Journal of Geophysical Research, 107(A12), 1491.
[5] Jia, X. ,  Walker, R. J. ,  Kivelson, M. G. ,  Khurana, K. K. , &  Linker, J. A. . (2008). Three-dimensional mhd simulations of ganymede’s magnetosphere. Journal of Geophysical Research: Space Physics.
[6] Jia, X. , Walker, R. J. , Kivelson, M. G. , Khurana, K. K. , & Linker, J. A. . (2010). Dynamics of ganymede's magnetopause: intermittent reconnection under steady external conditions. Journal of Geophysical Research Space Physics, 115(A12), -.
[7] Kivelson, M. G. ,  Khurana, K. K. ,  Coroniti, F. V. ,  Joy, S. ,  Russell, C. T. , &  Walker, R. J. , et al. (2013). The magnetic field and magnetosphere of ganymede. Geophysical Research Letters, 24(17), 2155-2158.
[8] Louis, C. K. ,  Lamy, L. ,  Zarka, P. ,  Cecconi, B. , &  Hess, S. . (2017). Detection of jupiter decametric emissions controlled by europa and ganymede with voyager/pra and cassini/rpws. Journal of Geophysical Research Space Physics.
[9] Menietti, J. D. ,  Gurnett, D. A. ,  Kurth, W. S. , &  Groene, J. B. . (2013). Control of jovian radio emission by ganymede. Geophysical Research Letters, 25(23), 4281-4284.
[10]Xianzhe, Jia, Raymond, J., Walke

 

吴诗琦:介绍“Gravity Wave on Mars”相关内容,参考文献如下所示:
[1] Yig ̆ it, E., S. L. England, G. Liu, A. S. Medvedev, P. R. Mahaffy, T. Kuroda, and B. M. Jakosky (2015), High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme, Geophys. Res. Lett., 42, 8993–9000, doi:10.1002/2015GL065307. 

[2] England, S. L., G. Liu, E. Yiğit, P. R. Mahaffy, M. Elrod, M. Benna, H. Nakagawa, N. Terada, and B. Jakosky (2017), MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere, J. Geophys. Res. Space Physics, 122, 2310–2335, doi:10.1002/2016JA023475. 

[3] Siddle, A. G. , Mueller-Wodarg, I. , Stone, S. W. , & Yelle, R. V. . (2019). Global characteristics of gravity waves in the upper atmosphere of mars as measured by maven/ngims. Icarus, 333. doi: 10.1016/j.icarus.2019.05.021 

[4] Vals, M. et al. (2017). Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements. European Planetary Science Congress. European Planetary Science Congress. doi: 10.1016/j.pss.2019.104708.

[5] Li, Y., Liu, J., & Jin, S. (2021). Horizontal internal gravity waves in the Mars upper atmosphere from MAVEN ACC and NGIMS measurements. Journal of Geophysical Research: Space Physics, 126, e2020JA028378. https:// doi.org/10.1029/2020JA028378 

[6] Yiğit, E., Medvedev, A. S., Benna, M., & Jakosky, B. M. (2021). Dust storm-enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implication for atmospheric escape. Geophysical Research Letters, 48, e2020GL092095. https://doi.org/10.1029/2020GL092095 

[7] Yigit, E., A. S. Medvedev, and P. Hartogh (2015), Gravity waves and high-altitude CO2 ice cloud formation in the Martian atmosphere, Geophys. Res. Lett., 42, 4294–4300, doi:10.1002/2015GL064275


2022.5.12.下午4:30-5:30将在A218会议室进行本学期第13周的Journal Club,由宋星燕和韩浩同学做文献阅读分享报告。具体分享文献信息如下:

宋星燕:Wu, K., Xu, J., Zhu, Y., & Yuan, W. (2021). Ionospheric plasma vertical drift and zonal wind variations cause unusual evolution of EPBs during a geomagnetically quiet night. Journal of Geophysical Research: Space Physics, 126, e2021JA029893. https://doi.org/10.1029/2021JA029893

韩浩:Yu, S., Liu, Z., & Lee, T. C. (2022). Ionospheric disturbances observed from a single GPS station in Hong Kong during the passage of Super Typhoon Hato in 2017. Space Weather, 20, e2021SW002850. https://doi.org/10.1029/2021SW002850


2022.5.5下午4:30-6:00将在A218会议室进行本学期第12周的Journal Club,由杨茜、谢熠和闫涛同学做文献阅读分享报告。具体分享文献信息如下:

杨茜:Hatch, S. M., Haaland, S., Laundal, K. M., Moretto, T., Yau, A., Bjoland, L. M., et al. (2020). Seasonal and hemispheric asymmetries of F region polar cap plasma density: Swarm and CHAMP observations, doi: 10.1029/2020JA028084.

谢熠:Chen, H., Gao, X., Lu, Q., Sauer, K., Chen, R., Yao, J., & Wang, S.(2021). Gap formation around 0.5Ωe of whistler-mode waves excited by electron temperature anisotropy, doi: 10.1029/2020JA028631.

闫涛:关于“Ganymede footprints”的综述,参考文献:

[1] Bonfond, B. ,  Hess, S. , Bagenal, F. , JC Gérard,  Grodent,D. , &  Radioti, A. , et al. (2013).The multiple spots of the ganymede auroral footprint. Geophysical ResearchLetters, 40(19), 4977-4981.

[2] Bonfond, B. ,  Saur, J. , Grodent, D. ,  Badman, S. V.,  Bisikalo, D. , &  Shematovich, V. , et al. (2017). The tails ofthe satellite auroral footprints at jupiter. Journal of Geophysical Research:Space Physics, 122(8), 7985-7996.

[3] Clarke, J. T. ,  Ajello, J. , Ballester, G. ,  Ben Jaffel, L.,  Connerney, J. , & Gérard, J.-C.,et al. (2002). Ultraviolet emissions from the magnetic footprints of io,ganymede and europa on jupiter. Nature, 415(6875), 997-1000.

[4] Jacobsen, S. ,  Neubauer, F. M. ,  Saur, J. , &  Schilling, N. . (2007). Io’s nonlinearmhd-wave field in the heterogeneous jovian magnetosphere. Geophysical ResearchLetters, 34(10), L10202.

[5] Denis, Grodent, Bertrand, Bonfond,Aikaterini, & Radioti, et al. (2009). Auroral footprint of ganymede. Journalof Geophysical Research: Space Physics, 114(A7).

[6] Moirano, A. ,  Mura, A. , Adriani, A. ,  Dols, V. ,  Bonfond, B. , &  Waite, J. H. , et al. Morphology of theauroral tail of io, europa and ganymede from jiram l-band imager. Journal ofGeophysical Research: Space Physics.

[7] Mura, A. ,  Adriani, A. , F  Altieri,  Connerney, J. ,  Bolton, S. J. , &  Moriconi, M. L. , et al. (2017). Infraredobservations of jovian aurora from juno's first orbits: main oval and satellitefootprints. Geophysical Research Letters, 44.

[8] Mauk, B. H. ,  Williams, D. J. , &  Mcentire, R. W. . (1997). Energy-timedispersed charged particle signatures of dynamic injections in jupiter's innermagnetosphere. Geophysical Research Letters.


2022.4.28下午4:30-5:00将在A218会议室进行本学期第11周的Journal Club,由罗巧文同学做文献阅读分享报告。具体分享文献信息如下:

罗巧文:关于“磁场重联中的磁通量绳”的综述。参考的文献:

1.RUSSELL C T, ELPHIC R. Initial isee magnetometer results:Magnetopause observations [J]. Space Science Reviews, 1978, 22(6): 681-715.

2.LEE L, FU Z. A theory of magnetic fluxtransfer at the earth’s magnetopause[J]. Geophysical Research Letters, 1985,12(2): 105-108.

3.HU Q, SONNERUP B U. Reconstruction ofmagnetic clouds in the solar wind: Orientations and configurations[J]. Journalof Geophysical Research: Space Physics, 2002, 107(A7): SSH-10.

4.DAUGHTON W, SCUDDER J, KARIMABADI H.Fully kinetic simulations of undriven magnetic reconnection with open boundaryconditions[J]. Physics of Plasmas, 2006, 13(7): 072101.

5.DRAKE J, SWISDAK M, CHE H, et al.Electron acceleration from contracting magnetic islands during reconnection[J].Nature, 2006, 443(7111): 553-556.

6.Tanaka, K. G., Yumura, T., Fujimoto, M., Shinohara,I., Badman, S. V., & Grocott, A. (2010). Merging of magnetic islands as anefficient accel_x0002_erator of electrons. Physics of Plasmas, 17(10), 102902.https://doi.org/10.1063/1.3491123

7.WANG Y, SHEN C, LIU R, et al.Understanding the twist distribution inside magnetic flux ropes by anatomizingan interplanetary magnetic cloud[J]. Journal of Geophysical Research: SpacePhysics, 2018, 123(5): 3238-3261.

8.HESSE M, CASSAK P. Magnetic reconnectionin the space sciences: Past, present, and future[J]. Journal of GeophysicalResearch: Space Physics, 2020, 125(2): e2018JA025935.


2022.4.21下午4:30-5:30将在A218会议室进行本学期第10周的Journal Club,由陈佳雯和戴隆康同学做文献阅读分享报告。具体分享文献信息如下:

陈佳雯:Park, J., Rajesh, P. K., Ivarsen, M.F.,  Lin, C. C. H., Eastes, R. W., Chao,C. K., et al. (2022). Coordinated observations of rocket exhaust depletion: GOLD, Madrigal TEC, and multiple low-Earth-orbit satellites, doi: 10.1029/2021JA029909.

戴隆康:“Titan上的云(The Clouds on Titan.)”研究综述。参考文献:

[1]Rebecca Auchettl,Mahmut Ruzi,DominiqueR. T. Appadoo,Evan G. Robertson,Courtney Ennis. Binary-Phase Acetonitrile andWater Aerosols: Infrared Studies and Theoretical Simulation at Titan AtmosphereConditions[J]. ACS Earth and Space Chemistry,2018,2(8).

[2]Sugata P. Tan,Jeffrey S. Kargel.Multiphase-equilibria analysis: Application in modeling the atmospheric andlacustrine chemical systems of Saturn's moon Titan[J]. Fluid PhaseEquilibria,2018,458.

[3]Jason Hartwig,Peter Meyerhofer,RalphLorenz,Eric Lemmon. An analytical solubility model for nitrogen–methane–ethaneternary mixtures[J]. Icarus,2018,299.

[4]Jonathan L. Mitchell,Juan M. Lora. TheClimate of Titan[J]. Annual Review of Earth and Planetary Sciences,2016,44(1).

[5]Christopher R. Glein,Everett L. Shock. Ageochemical model of non-ideal solutions in themethane–ethane–propane–nitrogen–acetylene system on Titan[J]. Geochimica etCosmochimica Acta,2013,115.

[6]Sébastien Lebonnois,JérémieBurgalat,Pascal Rannou,Benjamin Charnay. Titan global climate model: A new3-dimensional version of the IPSL Titan GCM[J]. Icarus,2012,218(1).

[7]Schneider T,Graves S D B,Schaller EL,Brown M E. Polar methane accumulation and rainstorms on Titan fromsimulations of the methane cycle.[J]. Nature,2012,481(7379).

[8]Tetsuya Tokano. PrecipitationClimatology on Titan[J]. Science,2011,331(6023).

[9]M. Ádámkovics,J.W. Barnes,M. Hartung,I.de Pater. Observations of a stationary mid-latitude cloud system on Titan[J].Icarus,2010,208(2).

[10]Chia C. Wang,E. Kathrin Lang,RuthSignorell. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'SCLOUDS[J]. The Astrophysical Journal Letters,2010,712(1).

[11]Schaller E L,Roe H G,Schneider T,BrownM E. Storms in the tropics of Titan.[J]. Nature,2009,460(7257).

[12]Chia C. Wang,Sushil K. Atreya,RuthSignorell. Evidence for layered methane clouds in Titan’s troposphere[J].Icarus,2009,206(2).

[13]Rodriguez Sébastien,Le Mouélic Stéphane,RannouPascal,Tobie Gabriel,Baines Kevin H,Barnes Jason W,Griffith Caitlin A,HirtzigMathieu,Pitman Karly M,Sotin Christophe,Brown Robert H,Buratti Bonnie J,ClarkRoger N,Nicholson Phil D. Global circulation as the main source of cloudactivity on Titan.[J]. Nature,2009,459(7247).

[14]C. A. Griffith,P. Penteado,P. Rannou,R.Brown,V. Boudon,K. H. Baines,R. Clark,P. Drossart,B. Buratti,P. Nicholson,C. P.McKay,A. Coustenis,A. Negrao,R. Jaumann. Evidence for a Polar Ethane Cloud onTitan[J]. Science,2006,313(5793).

[15]P. Rannou,F. Montmessin,F. Hourdin,S.Lebonnois. The Latitudinal Distribution of Clouds on Titan[J].Science,2006,311(5758).

[16]Caitlin A. Griffith,Joseph L.Hall,Thomas R. Geballe. Detection of Daily Clouds on Titan[J].Science,2000,290(5491).

[17]Griffith C A,Owen T,Miller G A,GeballeT. Transient clouds in Titan's lower atmosphere.[J]. Nature,1998,395(6702).

[18]Toon Owen B.,McKay ChristopherP.,Courtin Régis,Ackerman Thomas P.. Methane rain on Titan[J].Icarus,1988,75(2).

[19]Luckhaus D ,  Firanescu G ,  Lang E K , et al. The composition of ternary N2/CH4/C2H6 cloud droplets under Titan conditions: Monte Carlo simulations and experiment[J]. Molecular Physics, 2013.

[20] Schaller E L ,  Brown M E , Roe H G , et al. A large cloud outburst at Titan's south pole[J].Icarus, 2006, 182(1):224-229.

[21] Thompson W R ,  Zollweg J A , Gabis D H . Vapor-liquid equilibrium thermodynamics of nitrogen +methane: model and Titan applications[J]. Icarus, 1992, 97(2):187-199.


 

2022.4.14下午4:30-5:30将在A218会议室进行本学期第9周的Journal Club,由李炜焕和任傲珺做文献阅读分享报告。具体分享文献信息如下:

李炜焕:Kai FAN1(2022).

The solar wind plasma upstream of Mars observed by Tianwen-1: Comparison with Mars Express and MAVEN. Science China Earth Sciences volume 65, pages759–768 (2022). https://doi.org/10.1007/s11430-021-9917-0

任傲珺: Aryan, H(2020). 

Outer radiation belt electron lifetime model based on combined Van Allen Probes and Cluster VLF measurements. Journal of Geophysical Research: Space Physics, 125, e2020JA028018. https://doi.org/10.1029/2020JA028018


2022.4.7下午4:30-5:30将在A218会议室进行本学期第8周的Journal Club,由孙伟钦和黄旭做文献阅读分享报告。具体分享文献信息如下:

孙伟钦:从地球到木星土星辐射带里“zebra stripes”的研究综述。

Hao et al. [2020] The Formation of Saturn’s and Jupiter’s Electron Radiation Belts by Magnetospheric Electric Fields;

Sun et al. [2021] Saturn's Inner Magnetospheric Convection in the View of Zebra Stripe Patterns in Energetic Electron Spectra;

Sun et al. [2022] Zebra Stripe Patterns in Energetic Ion Spectra at Saturn.等等

黄旭:Lo, D. Y., Yelle, R. V., & Lillis, R. J. (2020). Carbon photochemistry at Mars: Updates with recent data. Icarus, 352, 114001. https://doi.org/10.1016/j.icarus.2020.114001

Lo, D. Y., Yelle, R. V., Lillis, R. J., & Deighan, J. I. (2021). Carbon photochemical escape rates from the modern Mars atmosphere. Icarus, 360, 114371. https://doi.org/10.1016/j.icarus.2021.114371


2022.3.31下午3:30-5:30将在A218会议室进行本学期第7周的Journal Club,由李子川和吴诗琦做文献阅读分享报告。具体分享文献信息如下:

李子川:N. Yoshida(2020).

Seasonal and latitudinal variations of dayside N2/CO2 ratio in the Martian thermosphere derived from MAVEN IUVS observations. Journal of Geophysical Research: Planets, (), –. doi:10.1029/2020JE006378 

吴诗琦:W.K. Peterson(2020). 

Subsolar electron temperatures in the lower Martian ionosphere. Journal of Geophysical

Research: Space Physics, 125, e2019JA027597. https://doi.org/10.1029/2019JA027597


2022.3.24下午3:30-5:30将在A218会议室进行本学期第6周的Journal Club,由李子川、孙伟钦、袁艺和陈佳雯做文献阅读分享报告。具体分享文献信息如下:

李子川:P. Thirupathaiah(2019).

Characteristics of solar X-ray flares and their effects on the ionosphere and

human exploration to Mars: MGS radio science observations. Icarus 330 (2019) 60–74. https://doi.org/10.1016/j.icarus.2019.04.015

孙伟钦:Yi-Xin Hao(2020).

The Formation of Saturn’s and Jupiter’s Electron Radiation Belts by Magnetospheric

Electric Fields. The Astrophysical Journal Letters, 905:L10 (13pp), 2020 December 10. https://doi.org/10.3847/2041-8213/abca3f


2022.3.10下午4:30-5:30将在A218会议室进行本学期第3周的Journal Club,由唐子菁和黄旭做文献阅读分享报告。具体分享文献信息如下:

唐子菁: Chen, J., Ren, X., Zhang, X., Zhang, J., & Huang, L.(2020). Assessment and validation of three ionospheric models (IRI‐2016, NeQuick2, and IGS‐GIM) from 2002 to 2018. Space Weather, 18,

e2019SW002422. https://doi.org/ 10.1029/2019SW002422

黄旭: Jianqi Qin.(2021). Solar Cycle, Seasonal, and Dust-storm-driven Variations of the Mars Upper Atmospheric State and H Escape Rate Derived from the Lyα Emission Observed by NASA’s MAVEN Mission. The Astrophysical Journal, 912:77 (15pp). https://doi.org/10.3847/1538-4357/abed4f


2022.3.4下午4:30-5:30将在A218会议室进行本学期第2周的Journal Club,由郭玥和罗巧文做文献阅读分享报告。具体分享文献信息如下:

郭玥: Xiaoli Yan(2020). 

Triggering Mechanism and Material Transfer of a Failed Solar Filament Eruption. The Astrophysical Journal,889.

https://doi.org/10.3847/1538-4357/ab61f3

罗巧文: L. D. Woodham(2021).

Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere. Astronomy & Astrophysics,650.

https://doi.org/10.1051/0004-6361/202039415


2021年-2022年度下学期

2022.2.24下午4:30-5:30将在A218会议室进行本学期第1周的Journal Club,由陈泽文和程岳铭做文献阅读分享报告。具体分享文献信息如下:

陈泽文: Zhu, H., Chen, L., Artemyev, A. V.,Zhang, X.-J., & Breneman, A. W.(2021). Superposed epoch analyses of electron-driven and proton-driven magnetic dips. Geophysical Research Letters, 48, e2021GL094934.

程岳铭: Gupta, N., Rao, N. V., Bougher, S., & Elrod, M. K. (2021). Latitudinal and seasonal asymmetries of the helium bulge in the Martian upper atmosphere. Journal of Geophysical Research: Planets, 126, e2021JE006976. https:// doi.org/10.1029/2021JE006976


2022.1.13下午4:30-5:30将在A218会议室进行本学期第20周(最后一次)的Journal Club,由李子川和程岳铭做文献阅读分享报告。

具体分享文献信息如下:

李子川: Lo et al. (2022). MAVEN/IUVS observations of C I 156.1 nm and 165.7 nm dayglow: Direct detection of carbon and implications on photochemical escape. Icarus, 371, https://doi.org/10.1016/j.icarus.2021.114664

程岳铭: Benna et al. (2019). Global circulation of Mars’ upper atmosphere, Science, 366, 1363–1366, https://www.science.org/doi/10.1126/science.aax1553


2021.12.30下午4:30-5:30将在A218会议室进行本学期第18周的Journal Club,由李炜焕和唐子菁做文献阅读分享报告。

具体分享文献信息如下:

李炜焕:Hull A J , Agapitov O , Mozer F S , et al. Dense low energy ions in Earth's outer magnetosphere: Spatial distribution, moment properties, and relation to solar wind dynamic pressure and magnetospheric activity[J]. Journal of Geophysical Research: Space Physics, 2021.

唐子菁:Huixin Liu. et al.(2020), Geomagnetic Activity Effects on CO2-Driven Trend in the Thermosphere and Ionosphere: Ideal Model Experiments With GAIA, Journal of Geophysical Research: Space Physics, https://doi.org/10.1029/2020JA028607


2021.12.23下午4:30-5:30将在A218会议室进行本学期第17周的Journal Club,由戴隆康和任傲珺做文献阅读分享报告。

具体分享文献信息如下:

戴隆康: Turbet et al. (2021). Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature, 598, 276. https://doi.org/10.1038/s41586-021-03873-w

任傲珺: Chen et al. (2019). Wavenumber analysis of EMIC waves. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL082686


2021.12.16下午4:30-5:30将在A218会议室进行本学期第16周的Journal Club,由袁艺和唐子菁做文献阅读分享报告。

具体分享文献信息如下:

袁艺: Romeo et al. (2021). Variability of upstream proton cyclotron wave properties and occurrence at Mars observed by MAVEN. Journal of Geophysical Research: Space Physics, 126, e2020JA028616. https://doi.org/10.1029/2020JA028616

唐子菁: Goncharenko et al. (2021). A new model for ionospheric total electron content: The impact of solar flux proxies and indices. Journal of Geophysical Research: Space Physics, 126, e2020JA028466. https://doi.org/10.1029/2020JA028466


2021.12.9下午4:30-5:30将在A218会议室进行本学期第15周的Journal Club,由陈泽文和陈佳雯做文献阅读分享报告。

具体分享文献信息如下:

陈泽文:Zhu, H., Chen, L., & Xia, Z. (2020). Electron‐driven magnetic dip embedded within the proton‐driven magnetic dip and the related echoes of butterfly distribution of relativistic electrons. Geophysical Research Letters, 47, e2020GL088983. https://doi.org/10.1029/2020GL088983

陈佳雯:Cai et al. (2021). Variations in thermosphere composition and ionosphere total electron content under “geomagnetically quiet” conditions at solar-minimum. Geophysical Research Letters, 48, e2021GL093300. https://doi.org/10.1029/2021GL093300


2021.12.2下午4:30-5:30将在A218会议室进行本学期第14周的Journal Club,由吴诗琦和郭玥做文献阅读分享报告。

具体分享文献信息如下:

吴诗琦:Martinez, A., Modolo, R., Leblanc, F., Chaufray, J. Y., Witasse, O., Romanelli, N., et al. (2020). Influence of the solar wind dynamic pressure on the ion precipitation: MAVEN observations and simulation results. Journal of Geophysical Research: Space Physics, 125, e2020JA028183. https://doi.org/ 10.1029/2020JA028183

郭玥:Aiying Duan.et al.(2021), Variation of Magnetic Flux Ropes through Major Solar Flares


2021.11.25下午4:30-5:30将在A218会议室进行本学期第13周的Journal Club,由李炜焕和任傲珺做文献阅读分享报告。

具体分享文献信息如下:

李炜焕:Schillings A ,  Slapak R ,  Nilsson H , et al. Earth atmospheric loss through the plasma mantle and its dependence on solar wind parameters[J]. Earth Planets and Space, 2019, 71(1).

任傲珺:David M. Malaspina. et al.(2019), A Wave Model and Diffusion Coefficients for Plasmaspheric Hiss Parameterized by Plasmapause Location, Journal of Geophysical Research: Space Physics,https://doi.org/10.1029/2019JA027415


2021.11.18下午4:30-5:30将在A218会议室进行本学期第12周的Journal Club,由黄旭和王康做文献阅读分享报告。

具体分享文献信息如下:

黄旭:Xie et al. (2021). Inside a lunar mini-magnetosphere: First energetic neutral atom measurements on the lunar surface. Geophysical Research Letters, 48, e2021GL093943. https://doi.org/10.1029/2021GL093943

王康:Wan et al. (2021). Persistent Occurrence of Strip-Like Plasma Density Bulges at Conjugate Lower-Mid Latitudes During the September 8–9, 2017 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 126(5), e2020JA029020. https://doi.org/10.1029/2020JA029020


2021.11.11下午4:30-5:30将在A218会议室进行本学期第11周的Journal Club,由袁艺和郭玥做文献阅读分享报告。

具体分享文献信息如下:

袁艺:MADANIAN, H. et al.(2019), Magnetic Holes Upstream of the Martian Bow Shock: MAVEN Observations. Journal of Geophysical Research: Space Physics, https://doi.org/10.1029/2019JA027198

郭玥:Ting Li. et al.(2021), Magnetic Flux and Magnetic Non-potentiality of Active Regions in Eruptive and Confined Solar Flares


2021.11.4下午4:30-5:30将在A218会议室进行本学期第10周的Journal Club,由吴诗琦和陈佳雯做文献阅读分享报告。

具体分享文献信息如下:

吴诗琦:González-Galindo, F., Eusebio, D., Němec, F., Peter, K., Kopf, A., Tellmann, S., & Paetzold, M. (2021). Seasonal and geographical variability of the Martian ionosphere from Mars express observations. Journal of Geophysical Research: Planets, 126, e2020JE006661. https://doi.org/10.1029/2020JE006661

陈佳雯:Fabricio et al., 2019, Linear Vary‐Chap Topside Electron Density Model with Topside Sounder and Radio‐Occultation Data


2021.10.28下午4:30-5:30将在A218会议室进行本学期第9周的Journal Club,由罗巧文和闫涛做文献阅读分享报告。

具体分享文献信息如下:

罗巧文:Dong et al., (2020). MMS observation of secondary magnetic reconnection beside ion‐scale flux rope at the magnetopause. Geophysical Research Letters, 47, e2020GL089075. https://doi.org/10.1029/2020GL089075

闫涛:Guo et al.,  (2019). A Rotating Azimuthally Distributed Auroral Current System on Saturn Revealed by the Cassini Spacecraft. The Astrophysical Journal Letters, 919:L25, https://doi.org/10.3847/2041-8213/ac26b5


2021.10.21下午4:30-5:30将在A218会议室进行本学期第8周的Journal Club,由陈泽文和黄旭做文献阅读分享报告。

具体分享文献信息如下:

陈泽文:Yin, Z.-F., Zhou, X.-Z., Zong, Q.-G., Liu, Z.-Y., Yue, C., Xiong, Y., et al. (2021). Inner magnetospheric magnetic dips and energetic protons trapped therein: Multi-spacecraft observations and simulations. Geophysical Research Letters, 48, e2021GL092567. https://doi.org/10.1029/2021GL092567

黄旭:Wang, X.‐D., Barabash, S., Futaana, Y., Shematovich, V., Galli, A., & Wurz, P. (2019). Energy spectral properties of hydrogen energetic neutral atoms emitted from the dayside atmosphere of Mars. Journal of Geophysical Research:Space Physics, 124, 4104–4113. https://doi.org/10.1029/2018JA026346


2021.10.14下午4:30-5:30将在A218会议室进行本学期第7周的Journal Club,由罗巧文和闫涛做文献阅读分享报告。

具体分享文献信息如下:

罗巧文:He et al., 2019, Direct Measurement of the Dissipation Rate Spectrum around Ion Kinetic Scales in Space, The Astrophysical Journal

闫涛:Grodent et al., 2009, Auroral footprint of Ganymede, JGR


2021.9.30下午4:30-5:30将在A218会议室进行本学期第4期Journal Club,由戴隆康和孙伟钦做文献阅读分享报告。

戴隆康:Rimmer et al., 2021,Three Different Ways to Explain the Sulfur Depletion in the Clouds of Venus, DOI:10.48550/arXiv.2101.08582

孙伟钦: Yi, J., Fu, S., Ni, B., Gu, X., Hua, M., Xiang, Z., et al. (2021). Global distribution of reversed energy spectra of ring current protons based on Van Allen Probes observations. Geophysical Research Letters, 48, e2020GL091559. https://doi.org/10.1029/2020GL091559


2021.9.22上午8:30-9:30将在A218会议室进行本学期第三次Journal Club,由李子川和王康做文献阅读分享报告。

具体分享文献信息如下:

李子川:Masunaga et al., 2020, Martian Oxygen and Hydrogen Upper Atmospheres Responding to Solar and Dust Storm Drivers: Hisaki. Space Telescope Observations, JGR Planets

王康:Chen et al., 2021, Near Real-Time Global Plasma Irregularity Monitoring by FORMOSAT-7/COSMIC-2, JGR Space


2021.9.16下午4:30-5:30将在A218会议室进行本学期第2次Journal Club,由程岳铭和孙伟钦做文献阅读分享报告。

具体分享文献信息如下:

程岳铭:Steckiewicz et al., 2019, Dawn/Dusk Asymmetry of the Martian UltraViolet Terminator Observed Through Suprathermal Electron Depletions, JGR Space

孙伟钦:Liu et al., 2019, Drifting Electron Holes Occurring During Geomagnetically Quiet Times: BD-IES Observations, JGR Space


2021年-2022年度上学期

2021.9.9下午4:30-5:30将在A218会议室进行本学期第1次Journal Club,由赖海容老师和孙伟钦做文献阅读分享报告。

具体分享文献信息如下:

赖海容老师:Laura Vuorinen et al., 2021, Magnetic field in magnetosheath jets: A statistical study of BZ near the magnetopause.

孙伟钦:Liu, Z. Y., Zong, Q.-G., Hao, Y. X., Liu, Y., & Chen, X.-R. (2018). The radial propagation characteristics of the injection front: A statistical study based on BD-IES and Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 123, 1927–1937. https://doi.org/10.1002/2018JA025185