胡晓明,理学博士、教授、博士生导师


个人简介 [CV.PDF]

胡晓明,现任中山大学大气科学学院教授,国家自然科学基金优秀青年基金项目获得者。致力于气候动力学研究,主要兴趣为以大气质量、能量和水循环为切入点探索全球和区域气候变化机理、热带海气相互作用、热带影响极地气候的物理机制等问题。已在Nature CommunicationsNational Sciences ReviewJournal of ClimateClimate Dynamics等期刊已发表学术论文近40篇,主持国家级、省级等科研项目共7项。曾获美华海洋大气学会宇翔海归青年学者奖(2017)、谢义炳青年气象科技奖(2021)

 

地址:广东省珠海市大学路2号中山大学海琴2号楼A344(邮编 519082)

Email: huxm6@mail.sysu.edu.cn

 

欢迎有兴趣开展研究性学习训练、本科毕业论文设计、硕博研究生深造的同学加入!

 

教育背景                                                             

2013.08-2016.06   中山大学大气科学学院气象系(导师:杨崧教授),博士

2010.09-2013.06   中国海洋大学海洋环境学院气象系(导师:黄菲教授),硕士

2006.09-2010.06   中国海洋大学海洋环境学院大气科学系,学士

 

工作经历 

2023.06-至今          中山大学大气科学学院,教授

2019.05-2023.05     中山大学大气科学学院,副教授

2016.12-2017.06    美国佛罗里达州立大学地球、海洋和大气科学系,访问学者

2016.07-2019.04    中山大学大气科学学院,特聘副研究员

2014.11-2015.12    美国佛罗里达州立大学地球、海洋和大气科学系,访问学生

2011.06-2013.05    中国气象局国家气候中心,访问学生

 

学术兼职  

2020至今        Frontiers in Earth Sciences                  Guest Editor
2022至今        Ocean-Land-Atmosphere Research           Editor
2023至今        气象科学                                                   编委
2025至今        Scientific Reports                                      Editor
2025至今        Journal of Geophysical Research: Atmosphere     Associate Editor
2019-2020      卫星海洋环境动力学国家重点实验室               访问“海星学者” 
Climate DynamicsJournal of ClimateJournal of Geophysical Research: AtmospheresInternational Journal of Remote Sensing Letter 等期刊审稿人;

 

研究方向

气候变化、预估及其不确定性

气候反馈对全球变暖及区域气候变化的贡献

极地气候变化及热带-极区气候相互作用

ENSO对全球变暖的响应与反馈

 

讲授课程

《动力气象》      (本科核心课程)

《海洋与冰冻圈科学》 (本科必修课程)

《海洋学》        (本科课程)

《冰冻圈科学概论》   (本科课程)

《热带大气动力学》   (硕士必修课程)

 

本科生研习示例

  • 排放-气候-经济交互模型(完成人:王树,获得软件著作权 1 项,软件下载
  • 罗斯冰架表面融化机理研究(完成人:李雯宜,发表SCI一区论文

 

科研项目

  • 2023.01-2025.12 国家自然科学基金优秀青年科学基金:气候反馈及其不确定性,主持
  • 2021.01-2024.12 国家自然科学基金面上项目:向极能量和水汽输运对南极温度变化的影响,主持
  • 2021.10-2024.09 南方海洋科学与工程广东省重点实验室(珠海)青年人才支持项目:全球变暖背景下南北极增暖不对称性研究,主持
  • 2019.07-2021.06 国家自然科学基金国际合作与交流项目(中韩):东亚气候敏感度,主持(已结题)
  • 2019.01-2021.12 国家自然科学基金青年基金:定量分析模式间气候态差异对气候敏感度不确定性的影响,主持(已结题)
  • 2018.05-2021.04 广东省自然科学基金:ENSO衰退速度对华南春季气候变化及预测的影响,主持(已结题)
  • 2017.05-2020.05 广东省自然科学基金:厄尔尼诺和拉尼娜对我国华南旱涝灾害的影响多样性的研究,主持(已结题)
  • 2017.01-2019.12 校级青年教师培育项目:热带气候态海温模拟误差对气候模拟及气候变化预估的影响,主持(已结题)
  • 2017.01-2021.12 国家基金委重大项目:ENSO对全球变暖的响应和反馈,参加(骨干,已结题)
  • 2019.07-2024.06 科技部国家重点研发:影响北极未来变化趋势的关键过程、情景与效应研究,参加(骨干)
  • 2020.12-2025.11 科技部国家重点研发:西太平洋与周边海域相互作用对 ENSO 过程的影响,参加(骨干)

 

团队研究生 

  • 硕士:孔蕴淇(广东省气象局生态中心)、段志方(云南省气象局迪庆州气象局)、陈昕璐(已转博)、张晓曼、许可、宋佳颖、刘翔宇
  • 博士:韩宇慧、张义晗、李敬怡
  • 博士(参与指导):李亚娜、范汉杰、吴玉婷、方樱霏、王佩禧、吴树炎、徐敏、杨冉、刘妍池

     

国际学术交流 

  • 2023.1.12,中国,厦门,特邀报告XMAS-VI (6th Xiamen Symposium on Marine Enviromental Sciences)A quantitative analysis of the source of inter-model spread of Arctic surface warming response to increased CO2 concentration

  • 2019.10.3,美国,Tallahassee, FL特邀报告Florida State Univ.What are the main sources for the global warming projection spread by climate models?

  • 2015.11.20,美国,Tallahassee, FL特邀报告Florida State Univ.Delineation of Thermodynamic and Dynamic Response to SST Forcing Associated with El Niño

  • 2020.01.12-16,美国,Boston, MA,大会报告,AMS2020Atmospheric Dynamics Footprint on the January 2016 Ice Sheet Melting in West Antarctica

  • 2019.10.08-12,韩国,首尔,大会报告,Korea-China Joint Climate WorkshopWhat are the main sources for the spread of climate model warming projection?

  • 2019.05.26-30,日本,千叶,大会报告,JpGUDecadal Evolution of the Surface Energy Budget during the Fast Warming and Global Warming Hiatus Periods in the ERA-Interim

  • 2018.07.03-08,美国,Honolulu, HI,大会报告,AOGS2018Inter-Model Warming Projection Spread: Inherited Traits from Control Climate Diversity

  • 2018.05.08-10,中国,青岛,大会报告,OSS2018Delineation of Thermodynamic and Dynamic Response to SST Forcing Associated with El Niño

  • 2018.01.07-11,美国,Austin, TX,大会报告,AMS2018Inter-Model Warming Projection Spread: Inherited Traits from Control Climate Diversity

  • 2016.08.04,中国,北京,大会报告,AOGS2016Delineation of Thermodynamic and Dynamic Response to SST Forcing Associated with El Niño

  • 2016.07.29,中国,北京,大会报告,COAA2016Process-based Attribution of the Temporal Evolution of the Global Warming in the Last 37 Years

  • 2015.08.02-07,新加坡,大会报告,AOGS2015A Digital Map from External Forcing to the Final Surface Warming Pattern

  • 2015.08.02-07,新加坡,大会报告,AOGS2015The Eastern Pacific El Niño and the Central Pacific El Niño: Process-Based Feedback Attribution

  • 2015.1.04-08,美国,Phoenix, AZ,大会报告,AMS2015Contrasting Feedback Attribution of Atmospheric and Surface Temperature Anomalies Related to Eastern Pacific ENSO and Central Pacific ENSO

 

发表著作及论文 

  • Yang, S., R. Wu, M. Jian, J. Huang, X. Hu, Z. Wang, and X. Jiang. 2020: Variations of Climate over Southeast Asia and the Adjacent Regions. Springer, pp 1-500. (Lead author of Chapter 6)

  • 杨崧,吴仁广,简茂球,黄健,王子谦,胡晓明,蒋兴文编. 2019: 东南亚及其周边地区气候变化. 北京:科学出版社.(第五章:胡晓明, 李亚娜, 杨崧, 黄平, 蔡鸣, 陈俊文, 林文实, 应俊, 2019: 东南亚地区及全球气候变化归因分析

  • 周天军等,《第四次国家气候变化评估报告》第十二章:气候敏感度、气候阈值及减缓视角

  • 蔡榕硕、成里京、曹龙、吴仁广、武炳义、杜凌、胡晓明、李元龙、王志彪(青年科学家)、李海艳,《第五次国家气候变化评估报告》第7章:海洋和极地

待发表工作(*为通讯作者):

  • Han, Y. (韩宇慧), X. Hu, J. Liu, and K. Deng, 2026: Projected increases in Antarctic strong offshore wind events over major high-salinity shelf water production regions in CMIP6 simulations. In preparation.
  • Hu, X., Y. Zhang, P. Wang, Z. Li, M. Cai, S. Yang*, D. Chen*, J. Liu, and Q. Yang, 2026: Bathymetry dominates asymmetric polar warming amplification. Science Advances, submitted.
  • Fang, Y.(方樱霏), J. Screen, X. Hu*, S. Lin, and S. Yang, 2026: Consistent strengthening of ENSO teleconnection in the Southern Hemisphere across future emission scenarios. Geophy. Res. Lett.,, under review.
  • Zhang, Y.(张义晗), S. Yang, Z. Li, P. Wang*, and X. Hu*, 2026: Does Polar Warming Asymmetry Exist in Bathy-planet Experiments?. Geophy. Res. Lett.,, under review.
  • Wang, P.(王佩禧), Z. Li, Q. Yu, S. Yang, and X. Hu*, 2026: Role of ocean topography in shaping Earth’ s climate: Insights from aquaplanet simulation with realistic bathymetry. Ocean-Land-Atmos. Res., under review.
  • Chen (陈昕璐) et al., 2026: Sub-seasonal Variability of West Antarctic Surface Air Temperature in Austral Summer. J. Climate, under review.

一作及通讯文章(*为通讯作者,中文标注为学生一作):

  • Han, Y. (韩宇慧), M. Cai*, Z. Li, S. Yang, and X. Hu*, 2025: Hemispheric asymmetry of land-ocean distribution causes asynchronous global atmospheric energy response to solar forcing. Adv. in Atmos. Sci., https://doi.org/10.1007/s00376-025-5239-2.[PDF]
  • Xu, L., S. Yang, A. Wang, S. He, D. Wang, X. Hu*, T. Zhang, Y. Chen, K. Deng, 2025: Unveiling remote and local drivers for the interdecadal increase in summer extreme high temperature days over southern China, Adv. in Climate Change Res., in press. [PDF]
  • Zhang, X. (张晓曼), W. Zhong, Q. Li, X. Hu*, M. Li*, and Y. Kong, 2025: Assessment of multi-year El Niño and the associated spring rainfall over Southern China in CMIP6. Ocean-Land-Atmos. Res., 4, 1-12. doi:10.34133/olar.0126. [PDF]
  • Wang, P. (王佩禧), Y. Han, S. Yang*, Z. Li, X. Li, J. Ying, and X. Hu*, 2025: Impacts of strengthened Antarctic Circumpolar Current on the seasonality of Arctic climate, Geophy. Res. Lett., 52, e2025GL115211. https://doi.org/10.1029/2025GL115211. [PDF]
  • Zhang, Y. (张义晗), S. Yang*, P. Wang, and X. Hu*, 2025: Projected Antarctic land warming and uncertainty driven by atmospheric heat transport, Geophy. Res. Lett., 52, e2025GL114630. https://doi.org/10.1029/2025GL114630. [PDF]
  • Han, Y. (韩宇慧), S. Yang*, P. Wang, Z. Li, and X. Hu*, 2025:Response of Australian Summer Monsoon precipitation to a strengthening Antarctic Circumpolar Current, Geophy. Res. Lett., 52, e2024GL113080. https://doi.org/10.1029/2024GL113080.[PDF]
  • Hu, X., M. Cai*, J. Sun, F. Ding, and J. Feng, 2025: Energy gain kernel for climate feedbacks. Part II: Spatial pattern of surface amplification factor and its dependency on climate mean state. J. Atmos. Sci., 82(3): 675-688.[PDF]
  • Cai*#, M., X. Hu#, J. Sun, G. Liu, and Z. Wu, 2025: principles-based adept predictions of global warming from climate mean states. Natl. Sci. Rev., nwae442, https://doi.org/10.1093/nsr/nwae442 (Zhang, G., 2025: An innovative approach to predicting global warming without using climate model simulations, Natl Sci Rev, 12(2), nwae453, https://doi.org/10.1093/nsr/nwae453)[PDF]
  • Fang, Y. (方樱霏), J. Screen, X. Hu*, S. Lin, N. Williams, and S. Yang*, 2024: CMIP6 models underestimate ENSO teleconnections in the Southern Hemisphere, Geophy. Res. Lett., 51, e2024GL110738. https://doi.org/10.1029/2024GL110738.[PDF]
  • Chen, X. (陈昕璐), L. Xu, R. Yang, M. Cai, Y. Deng, D. Chen, S. Yang, J. Liu, Q. Yang, and X. Hu*, 2024: Deciphering the Prevalence of Warm-Wet Extremes in Ice-Covered Zones, Geophy. Res. Lett., 51, e2024GL109777. https://doi.org/10.1029/2024GL 109777.[PDF]
  • Wang, P.(王佩禧), S. Yang, Z. Li, Z. Song, X. Li, and X. Hu*, 2024: Role of the Antarctic Circumpolar Current in asymmetric Arctic and Antarctic warming. Geophy. Res. Lett., 51, e2024GL110265. https://doi.org/10.1029/2024GL110265.[PDF]
  • Fang, Y.(方樱霏), S. Yang, X. Hu*, S. Lin, J. Screen, and S. Chen, 2024: Remote Forcing for a Circulation Pattern Favorable to Surface Melt over the Ross Ice Shel. J. Climate, 37(18): 4689-4702, doi: 10.1175/JCLI-D-23-0120.1.[PDF]
  • Wu, S. (吴树炎), W. Lin, L. Dong*, F. Song, S. Yang, Z. Lu, and X. Hu*, 2024: Role of SST in seasonal Western North Pacific Anomalous anticyclone: Insights from AMIP simulations in CMIP6. Geophy. Res. Lett., 51, doi: 10.1029/2023GL107080. [PDF]

  • Yang, R. (杨冉), X. Hu*, M. Cai, Y. Deng, K. Clem, S. Yang, L. Xu and Q. Yang*, 2024: A paradigm shift of compound extremes over polar ice sheets. Ocean-Land-Atmos. Res., 3, 6–9, https://doi.org/10.34133/olar.0040. [PDF]

  • Zhang, Y. (张义晗), Y. Kong, S. Yang, M. Cai, and X. Hu*, 2023: Asymmetric Arctic and Antarctic warmings and their inter-model spread. J. Climate, doi: 10.1175/JCLI-D-23-0118.1 [PDF]

  • Sun, J., M. Secor, M. Cai, and X. Hu*, 2023: A quasi-linear relation between planetary outgoing longwave radiation and surface temperature in a radiative-convective-transportive climate model of gray atmosphere. Adv. in Atmos. Sci., doi: 10.1007/s00376-023-2386-1.[PDF]

  • Liu, Y. (刘妍池), Y. Kong, Q. Yang, and X. Hu*, 2023: Influence of surface types on the seasonality and inter-model spread of Arctic amplification in CMIP6. Adv. in Atmos. Sci., doi: 10.1007/s00376-023-2338-9. [PDF]

  • Li, W. (李雯宜), Y. Wu, and X. Hu*, 2023: Processes-based attribution of four major surface melting events over the Ross Ice Shelf. Adv. in Atmos. Sci., accepted, doi: 10.1007/s00376-023-2287-3.

  • Hu*, X., Y. Kong, Y. Liu, and Q. Yang, 2022: A quantitative analysis of inter-model spread of arctic amplification of surface warming. Geophy. Res. Lett., 49, e2022GL100034. [PDF]

  • Wu, Y. (吴玉婷), X. Hu*, Z. Li, M. Cai, M. Lu, and S. Yang*, 2022: Remote effect of model systematic bias in tropical SST on the cold bias over the Tibetan Plateau. Clim. Dyn., doi: 10.1007/s00382-022-06421-y. [PDF]

  • Kong, Y.(孔蕴淇), Y. Wu, X. Hu*, Y. Li, and S. Yang*, 2022: Uncertainty in projections of the South Asian summer monsoon under global warming by CMIP6 models: Role of tropospheric meridional thermal contrast. Atmos. Oceanic Sci. Lett., 15(1), 100145[PDF]

  • Hu*, X., J. Ma, J. Ying, Y. Kong. 2021: Inferring future warming in the Arctic from the observed global warming trend and CMIP6 simulations. Adv. Climate Change Res., doi: 10.1016/j.accre.2021.04.002. [PDF]

  • Fan, H. (范汉杰), X. Hu*, S. Yang, Y-S Choi, and Y-K Lee. 2021: Relative contributions of thermodynamic and dynamic processes to the future warming projection and its uncertainty over East Asia. Climate Dyn., doi:10.1007/s00382-020-05614-7. [PDF]

  • Hu, X., H. Fan, M. Cai*, S Sejas, P. Taylor, and S. Yang. 2020: A less cloudy picture of the inter-model spread in future global warming projections. Nat. Commun., 114472. https://doi.org/10.1038/s41467-020-18227-9. [PDF, 高影响因子论文]

  • Wu, Y. (吴玉婷), S. Yang, X. Hu*, and W. Wei, 2020: Process-based attribution of long-term surface warming over the Tibetan Plateau. Int. J. Climate, doi: 10.1002 /joc.6589. [PDF]

  • Gao, W., S. Yang, X. Hu*, W. Wei, and Y. Xiao, 2019: Characteristics and Formation Mechanisms of Spring SST Anomalies in the South China Sea and Its Adjacent Regions. Atmosphere (Basel)., 10, 649, doi:10.3390/atmos10110.649. [PDF]

  • Hu, X., S. Sejas, M. Cai*, Z. Li, and S. Yang, 2019: Atmospheric dynamics footprint on the January 2016 ice sheet melting in West Antarctica. Geophy. Res. Lett., doi: 10.1029/2018GL081374. [PDF]

  • Hu, X., S. Sejas*, M. Cai, P. Taylor, Y. Deng, and S. Yang, 2018: Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim. Climate Dyn., doi: 10.1007/s00382-018-4232-1. [PDF]

  • Yang, S., Z. Li, J. Yu, X. Hu*, W. Dong, and S. He, 2018: El Niño–Southern Oscillation and Its Impact in the Changing Climate. Natl. Sci. Rev., doi: 10.1093/nsr/nwy046. [PDF高影响因子论文]

  • Hu, X., M. Cai, S. Yang*, S. Sejas. 2018: Air temperature feedback and its contribution to global warming. Sci China Earth Sci, doi: 10.1007/s11430-017-9226-6. [PDF, 美国科学促进会新闻报导]

  • Hu, X., P. Taylor, M. Cai*, S. Yang, Y. Deng, and S. Sejas, 2017: Inter-Model warming projection spread: Inherited traits from control climate diversity. Sci. Rep., doi: 10.1038/s41598-017-04623-7. [PDF]

  • Hu, X., M. Cai*, S. Yang*, and Z. Wu, 2017: Delineation of thermodynamic and dynamic responses to sea surface temperature forcing associated with El Niño. Climate Dyn., doi: 10.1007/s00382-017-3711-0. [PDF]

  • Hu, X., Y. Li, S. Yang, Y. Deng, and M. Cai*, 2017: Process-based decomposition of the decadal climate difference between 2002–13 and 1984–95. J. Climate, 30, 4373–4393, doi: 10.1175/JCLI-D-15-0742.1. [PDF]

  • Hu, X., S. Yang*, and M. Cai, 2016: Contrasting the eastern Pacific El Niño and the central Pacific El Niño: process-based feedback attribution. Climate. Dyn., 47, 2413-2424, doi: 10.1007/s00382-015-2971-9. [PDF]

  • 胡晓明,蔡鸣,杨崧*, S. Sejas. 2018: 大气温度反馈的机理及其对全球增暖的贡献. 中国科学:地球科学,doi: 10.1007/s11430-017-9226-6. [PDF, 美国科学促进会新闻报导]

  • 胡晓明,王国复*,黄菲,2014:不同站网对极端降水事件变化监测的影响. 气象科技42 (3)382-390. [PDF]

 

部分合作文章:

  • Zhang, S., H. Fan*, X. Hu, S. Lin, 2024: Unprecedented cross-equatorial southerly wind anomalies during the 2020–2023 triple-dip La Niña: Impacts and mechanisms. Atmos. Res., doi: 10.1016/j.atmosres.2024.107412. [PDF]

  • Cai*, M., X. Hu, J. Sun, F. Ding, and J. Feng, 2024: Energy gain kernel for climate feedbacks. Part I: Formulation and physical understanding. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-23-0148.1.

  • Lee, Y.-K., Y.-S. Choi, J. Hwang, X. Hu, and S. Yang, 2024: On the importance of a geostationary view for tropical cloud feedback. Geophy. Res. Lett., 51(4), 10.1029/2023GL106897, doi: 10.1029/2023GL106897. [PDF]

  • Wu, Q., Q. Li, X. Hu, and X. Sun, 2023: Prosses-based attributions of the summer upper-tropospheric temperature related to the South Asian summer monsoon. J. Climate, 37(5): 1683-1701, doi: 10.1029/2023GL106897. [PDF]

  • Cai*, M., J. Sun, F. Ding, W. Kang, and X. Hu, 2023The quasi-linear relation between planetary outgoing long wave radiation and surface temperature: a climate footprint of radiative and non-radiative processes, J. Atmos. Sci., 80, 2131-2146, doi: 10.1175/JAS-D-22-0261.1. [PDF]

  • Xu, M., Q. Yang, K. Clem, L. Yu, X. Hu, 2023: On the seasonal and spatial dependence of extreme warm days in Antarctica. Geophy. Res. Lett.,  doi: 10.1029/2022GL102472. [PDF]

  • Wu, R., X. Hu, S. Yang, and S. Sejas. 2022: Editorial: Changes in snow, monsoon and snow-monsoon relationship in the warming climate. Frontiers Earth Sci., 10: 906982, doi: 10.3389/feart.2022.906982. [PDF]

  • Chen, J., S. Yang*, X. Hu, S. Lin, Z. Li, 2022: Influence of deep convective heating over the Maritime Continent on the Amundsen Sea Low in the boreal spring. Geophy. Res. Lett., 49(9): e2021GL097322. doi: 10.1029/2021GL097322. [PDF]

  • Xu, M., Q. Yang*, X. Hu, K. Liang, and T. Vihma, 2022: Record-breaking rain falls at Greenland summit controlled by warm moist air intrusion. Envir. Res. Lett.17(4): 044061, doi: 10.1088/1748-9326/ac60d8. [PDF]

  • Sejas*, A.S., X. Hu, M. Cai, and H. Fan, 2021: Understanding the differences between TOA and surface energy budget attributions of surface warming. Frontiers Earth Sci., accepted. [PDF]

  • Xu, M., L. Yu, T. Vihma, D. Bozkurt, K. Liang, X. Hu, Q. Yang*, 2021: Dominant role of vertical motion in the unprecedented warming on the Antarctic Peninsula in February 2020. Commun. Earth & Environment, 2: 133, https://doi.org/10.1038/s43247-021-00203-w. [PDF]

  • Ma, J., T. Zhang, X. Guan*, X. Hu, Y. Xu, and A. Duan, 2019: The dominant role of snow albedo feedback related to black carbon on enhanced warming over the Himalayas. J. Climate, doi: 10.1175/JCLI-D-18-0720.1. [PDF]

  • Li, Y., S. Yang*, Y. Deng, X. Hu, M. Cai, and W. Zhou, 2018: Detection and attribution of upper-tropospheric warming over the tropical western Pacific. Climate Dyn., doi: 10.1007/s00382-019-04681-9. [PDF]

  • Li, Z., S. Yang*, X. Hu, W. Dong, and B. He, 2017: Charge in long-lasting El Niño events by convection-induced wind anomalies over the western Pacific in boreal spring. J. Climate, doi: 10.1175/JCLI-D-17-0558.1. [PDF]

  • Li, Y., S. Yang*, Y. Deng, X. Hu, and M. Cai, 2017: A process-level attribution of the annual cycle of surface temperature over the maritime continent. Climate Dyn., doi: 10.1007/s00382-017-4043-9. [PDF]

  • 张涛,刘喜迎*胡晓明2013: 北极海冰与大气环流耦合主模态的时空特征分析. 极地研究25226233. [PDF]


 Krankenversicherung Rechner 

(最近更新:2026年1月)