欢迎对极端事件、气候可预测性、ENSO-季风相互作用等方向感兴趣的同学加入团队!

 

教育背景

  • 2013.08-2018.06        中山大学大气科学学院气象学系(直博,导师:杨崧教授)                  博士学位
  • 2009.09-2013.06        中山大学环境科学与工程学院大气科学系(保送“优生优培”直博)        学士学位

 

工作经历:     

  • 2020.06至今                  中山大学大气科学学院气象学系                                 “百人计划” 副教授
  • 2018.09-2020.06           香港中文大学环境、能源与可持续发展研究所              博士后
  • 2015.11至2016.12         美国乔治梅森大学海洋-陆地-大气研究中心(COLA)  访问学者

 

研究方向: 

  • 气候可预测性
  • 极端事件
  • ENSO-季风相互作用

 

一作及通讯文章(*为通讯作者):

Zhang, T., Y. Deng, J. Chen*, S. Yang, and Y. Dai, 2023: An energetics tale of the 2022 mega-heatwave over central-eastern China. npj Clim. Atmos. Sci., 6, 162, doi: 10.1038/s41612-023-00490-4.[PDF]

Wang, W., T. Zhang*, J. Chen, Q. Li, S. Yang*, and X. Jiang, 2023: Quantitative attribution of the temperature associated with winter extreme cold events in China. Climate Dyn., doi: 10.1007/s00382-023-06906-4.[PDF]

Wang, W., S. Yang, Q. Li, T. Zhang*, and X. Jiang, 2023: Alternate modulations of ENSO and the Arctic Oscillation on winter extreme cold events in China. Atmos. Res., 282, 106532, doi: 10.1016/j.atmosres.2022.106532.[PDF]

Zhang, T., X. Jiang*, S. Yang, J. Chen, and Z. Li, 2022: A predictable prospect of the South Asian summer monsoon. Nat. Commun., 13, 7080, doi: 10.1038/s41467-022-34881-7.[PDF]

Zhang, T., Y. Deng, Chen, J. *, S. Yang, P. Gao, and H. Zhang, 2022: Disentangling physical and dynamical drivers of the 2016/17 record-breaking warm winter in China. Environ. Res. Lett., 17, 074024, doi: org/10.1088/1748-9326/ac79c1.[PDF]

Zhang, T., C.-Y. Tam, N.-C. Lau, J. Wang*, S. Yang, J. Chen, W. Yu, X. Jiang, and P. Gao, 2022: Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze-Huaihe River basin: The North Atlantic capacitor effect. Climate Dyn., doi: org/10.1007/s00382-022-06212-5.[PDF]

Zhang, T., X. Jiang*, J. Chen, S. Yang, Y. Deng, W. Wei, P. Hu, and P. Gao, 2021: Interannual variability of springtime extreme heat events over the southeastern edge of the Tibetan Plateau: Role of a spring-type circum-global teleconnection pattern. J. Climate, 34(24), 9915–9930, doi: org/10.1175/JCLI-D-21-0049.1.[PDF]

Jiang, X., T. Zhang*, C.-Y. Tam, J. Chen, N.-C. Lau, S. Yang, and Z. Wang, 2019: Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: Roles of convections over the western North Pacific and Indian Ocean. J. Geophys. Res., 124, doi: 10.1029/2019JD031384.[PDF]

Zhang, T., C.-Y. Tam, X. Jiang*, S. Yang, N.-C. Lau, J. Chen, and C. Laohalertchai, 2019: Roles of land-surface properties and terrains on Maritime Continent rainfall and its seasonal evolution. Climate Dyn., 53, 6681-6694, doi:10.1007/s00382-019-04951-6.[PDF]

Yang, S., T. Zhang*, Z. Li, and S. Dong, 2019: Climate Variability over the Maritime Continent and Its Role in Global Climate Variation: A Review. J. Meteor. Res., 33, 993-1015, doi: 10.1007/s13351-019-9025-x.[PDF]

Zhang, T., B. Huang*, S. Yang*, J. Chen, and X. Jiang, 2018: Dynamical and Thermodynamical Influences of the Maritime Continent on ENSO Evolution. Sci. Rep., 8, 15352, doi: 10.1038/s41598-018-33436-5.[PDF]

Zhang, T., B. Huang, and S. Yang*, 2018: Predictable patterns of the atmospheric low-level circulation over the Indo-Pacific domain in project Minerva: Seasonal dependence and intra-ensemble variability. J. Climate, 31, 8351-8379, doi: 10.1175/jcli-d-17-0577.1.[PDF]

Zhang, T., B. Huang, S. Yang*, and C. Laohalertchai, 2017: Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo-Pacific domain. Climate Dyn., 50, 4263-4284, doi: 10.1007/s00382-017-3874-8.[PDF]

Zhang, T., S. Yang*, X. Jiang, and P. Zhao, 2016: Seasonal-interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, 29, 3675-3695, doi: 10.1175/jcli-d-15-0222.1.[PDF]

Zhang, T., S. Yang*, X. Jiang, and B. Huang, 2016: Roles of remote and local forcings in the variation and prediction of regional Maritime Continent rainfall in wet and dry seasons. J. Climate, 29, 8871-8879, doi: 10.1175/jcli-d-16-0417.1.[PDF]

Zhang, T., S. Yang*, X. Jiang, and S. Dong, 2016: Sub-seasonal prediction of the Maritime Continent rainfall of wet-dry transitional seasons in the NCEP Climate Forecast Version 2. Atmos., 7, 28, doi: 10.3390/atmos7020028.[PDF]

 

 

合作文章:

Jiang, X. F. Cai, Z. Li, Z. Wang, and T. Zhang, 2023: The westerlies control the zonal migration of rainy season over the Tibetan Plateau. Communications Earth & Environment, in press.

Zhang, C., W. Tian, J. Zhang, T. Zhang, W. Yu, S. Yang, and T. Wang,2023: Impacts of April stratosphere–troposphere coupling on the South Asian pre-monsoon circulation. J. Climate, 36(18), 6213–6227, https://doi.org/10.1175/JCLI-D-22-0249.1. [PDF]

Zhang, C., Z. Zheng, Y. Ou, T. Zhang, Z. Xiao, S. Lai, Y. Cai, S. Chen, W. Qin, and H. He, 2023: The interannual relationship between the diabatic heating over the South Asia and the snow depth over the southern Tibetan Plateau in late spring to early summer: Roles of the air temperature. Adv. Meteorol., 2023, 9998659, https://doi.org/10.1155/2023/9998659. [PDF]

Xu, L., T. Zhang, W. Yu*, and S. Yang*, 2023: Changes in concurrent precipitation and temperature extremes over the Asian monsoon region: observation and projection. Environ. Res. Lett., 18, 044021, doi: 10.1088/1748-9326/acbfd0.[PDF]

Yu, W., Y. Liu*, T. Zhang, S. Yang, G. Xiong, D. Chen, Z. Wang*, X. Yang, L. Xu, and B. He, 2023: Potential impact of winter–spring North Atlantic tripole SSTAs on the following autumn–winter El Niño–Southern Oscillation: Bridging role of the Tibetan Plateau. Geophys. Res. Let., 50, e2022GL100663, doi:10.1029/2022GL100663.[PDF]

Xu, L., T. Zhang, A. Wang, W. Yu, and S. Yang, 2022: Variations of summer extreme and total precipitation over southeast Asia and associated atmospheric and oceanic features. J. Climate, 35(19), 2794-2808, doi: 10.1175/jcli-d-21-1020.1.[PDF]

Wang, W., S. Yang*, T. Zhang, Q. Li, and W. Wei, 2022: Sub-seasonal prediction of the South China Sea summer monsoon onset in the NCEP Climate Forecast System version 2. Adv. Atmos. Sci., 39, 1969-1981, doi: 10.1007/s00376-022-1403-0.[PDF]

Ai, S., and Coauthors, 2022: Effect and attributable burden of hot extremes on bacillary dysentery in 31 Chinese provincial capital cities. Sci. Total Environ., 832, 155028, doi: 10.1016/j.scitotenv.2022.155028.[PDF]

Huang, X., T. Zhang, X. Jiang, S. Liu, and D. Xiao, 2021: Interannual variability of mid-summer heat wave frequency over the Sichuan Basin. Int. J. Climatol., 41(10), 5036-5050, doi: 10.1002/joc.7115.[PDF]

Dong, S., S. Yang*, X. Yan, T. Zhang, Y. Feng, and P. Hu, 2020: The most predictable patterns and prediction skills of subseasonal prediction of rainfall over the Indo‑Pacific regions by the NCEP Climate Forecast System. Climate Dyn., 54, 2759-2775, doi: 10.1007/s00382-020-05141-5.[PDF]

Dong, S., S. Yang*, T. Zhang, and Y. Feng, 2019: Dynamical prediction of West China autumn rainfall by the NCEP Climate Forecast System. J. Tropic. Meteor., 1, doi: 1006-8775(2019)01-0114-15.[PDF]

Hu, C., S. Yang*, Q. Wu, Z. Li, J. Chen, K. Deng, T. Zhang, and C. Zhang, 2016: Shifting El Niño inhibits summer Arctic warming and Arctic sea ice melting over the Canada Basin. Nat. Commun., 7, doi: 10.1038/ncomms11721.[PDF]

Hu, C., S. Yang*, Q. Wu, T. Zhang, Y. Li, K. Deng, T. Wang, J. Chen, and C. Zhang, 2016: Re-inspecting Two Types of ENSO: A new pair of Niño indices for improving real-time monitoring. Climate Dyn., 47, 4031-4049, doi: 10.1007/s00382-016-3059-x.[PDF]

张成扬, 将跃林, 杨崧*, 胡春迪, 张团团, 邓开强, 2015: 5月华南降雨前期海温信号特征分析. 气象与环境科学, 38 (2), 29-35.[PDF]

 

科研项目:

国家自然科学基金面上项目,海洋性大陆热力过程对东亚夏季风的影响:青藏高原的桥梁作用,2022.01-2025.12,主持

国家自然科学基金青年基金,华南复合型热浪的次季节可预测性研究,2022.01-2024.12,主持

国家自然科学基金面上项目,亚洲海陆区域夏季风降水季节内变化可预报性的对比研究,2020.01-2023.12,第一参与

 

最近更新(2023年10月)