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Abstract This study presents a deep learning framework based on a VGG-like architecture for forecasting
+6-hr tropical cyclone remote precipitation (TCRP), a major precipitation phenomenon in East Asia. A three-
stage optimization strategy was implemented: (a) K-fold cross-validation was used to select 10 optimal
ensemble members, which were further optimized; (b) atmospheric physics knowledge was integrated into
activation function design and objective functions, resulting in a 19.23% increase in the Squeeze and Excitation
Block's (SE-Block) mean attention allocation to topographic features during the study period (2021-2023); (c)
multi-modal inputs combined with custom objective functions enhanced heavy TCRP prediction accuracy by
0.18 compared to a control experiment. The July 2021 Henan extreme rainfall event demonstrated that replacing
traditional activation functions with physics-informed designs and using custom objective functions increased
SE-Block attention allocation to topographic features by 21.74% and improved heavy TCRP forecasting
accuracy by 0.44 for optimal models compared to the control experiment. Results showed superior performance
in heavy TCRP prediction and enhanced attention allocation to topographic features during extreme rainfall
events, exceeding average values in 2021-2023. This work provides an explainable deep learning approach for
TCRP forecasting, advancing both methodology and physical interpretability, suggesting promising solutions
for extreme precipitation forecast through hybrid approaches combining atmospheric physics with data-driven
techniques.

Plain Language Summary This study developed a deep learning model using a VGG-like
architecture for forecasting +6-hr tropical cyclone remote precipitation (TCRP), a major East Asian
precipitation phenomenon. Using multi-modal inputs, integrating atmospheric physics into activation functions
and objectives achieved a 0.18 increase in heavy TCRP prediction compared to a control model and enhanced
model attention distribution to topographic feature by 19.23%. In the 2021 Henan extreme rainfall event,
replacing traditional activation functions with physics-informed designs boosted topographic feature attention
by 21.74% and improved heavy TCRP accuracy by 0.44. The study demonstrates superior performance in
predicting heavy TCRP events and highlights an explainable deep learning approach that combines atmospheric
physics with data-driven techniques, offering promising solutions for extreme precipitation forecast.

1. Introduction

Precipitation is one of the most important processes in atmospheric water cycle that are tightly associated with
moisture transport, whose extremes result in natural hazards, especially the floods, landslides, and soil erosion
(Gimeno-Sotelo & Gimeno, 2023; Konapala et al., 2020; Lu & Lall, 2017; Sellars et al., 2017). These events led to
significant losses: over 50% (~1.09 Million) deaths and ~$3.4 Trillion in economic loss globally (Douris
et al., 2022; L. Zhang et al., 2023), especially in developing regions. Extreme precipitation has been increasing
over the past six decades in dry and wet regions, resulting in catastrophic natural hazards (Barlow et al., 2019;
Donat et al., 2016). Previous studies show that precipitation extremes increase with stronger moisture transport,
which increases by 6%—7% K~' with surface temperature, and 8% K~ for integral over the whole atmosphere
under the global warming effect, according to Clausius-Clapeyron relation (Houze, 2014a; Koutsoyiannis, 2012).
Unlike moderate increase in long-term precipitation, there is sharp increase in extreme precipitation, likely due to
stronger convective activities (Houze, 2014b; Luo et al., 2023). The essential role of precipitation in the present
and the future, requires the intelligent prediction methods to improve forecast performance.
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Precipitation is tightly associated with diverse weather systems and events, which is the result of microphysical
processes (Houze, 2014a; A. Zhang et al., 2022). To investigate the association between intense moisture
transport and extreme precipitation, identification methods of atmospheric rivers (ARs), mesoscale convective
systems, and tropical cyclones (TCs) are developed (Cheng et al., 2022; M. Pan & Lu, 2020; L. Zhang
et al., 2023). Apart from precipitation associated with weather events above, precipitation associated with TC-
induced remote moisture transport attracts increasing attention in recent decades, as Beijing heavy rainfall in
2012, Yangtze Delta heavy rainfall in 2018 and Henan extreme rainfall in 2021 have caused floods and economic
loss (Chen et al., 2010; Rao et al., 2025). This type of precipitation falls outside TC circulations (roughly 700 km
depending on the size of TCs), with TCs the source of moisture transport (Chen et al., 2010; Sun et al., 2017; Xu
et al., 2022). Following the definitions above, the first objective identification algorithm of TC induced remote
moisture transport was developed to quantify the moisture transport characteristics of TC induced remote
moisture transport clusters (TRCs) (Xiao, Zhang, Chen, & Li, 2024), which is further used to find TRC tracks that
are classified into five types featuring orientations and find the significant Gaussian relation between precipitation
and moisture transport height, and sigmoid relation between precipitation and moisture transport intensity for
each type (Xiao, Zhang, Chen, & Li, 2024).

Numerical weather prediction methods, mainly consisting of atmospheric governing equations, are widely used in
weather agencies in many countries (Bauer et al., 2015). The numerical prediction framework integrates data
assimilation, the specification of initial and boundary conditions, and the computational solution of governing
equations—primarily the Navier-Stokes equations (Ershkov et al., 2021; Larios & Victor, 2024; Zhou
et al., 2024). The numerical prediction method has made significant progress, including advancements in
ensemble predictions, parameterization schemes and finer resolutions (Gao et al., 2021; Wu et al., 2022). Weather
prediction for Research and Forecasting (WRF) is one of the most widely used research software package for
numerical weather prediction, which are used in various studies to investigate effects on TC-induced remote
precipitation. A recent study set different levels of water vapor saturated and found that 300-400 hPa and 900—
1,000 hPa moisture can result in peak values of precipitation over Yangtze River Delta induced by Typhoon
“Mangkhut” (Liu et al., 2023). Studies using the WRF to investigate Henan extreme rainfall in July 2021 show
that Typhoon “In-fa” plays a significant role on generating jet-streak and transporting moisture to arc-shaped
convergence zone, and Typhoon “Cempaka” also plays a role in maintaining Huang-Huai cyclone and south-
easterly flow (Rao et al., 2025; Xu et al., 2022; Yin et al., 2022). The Integrated Forecast System (IFS) in the
European Center for Medium-range Weather Forecast (ECMWF, or EC), similar to the WREF, is another nu-
merical weather prediction system that powers 6-hr forecast appeared in this study, whose historical forecast
records starting from 2015 are archived in the Interactive Grand Global Ensemble (TIGGE) (Buizza et al., 2018;
Swinbank et al., 2016).

However, governing-equation-based numerical modeling require increasing computational cost with more
parameterization and finer resolution, which limits the number of ensembles (G. Chen & Wang, 2022; Espeholt
et al., 2022). Fortunately, deep learning models have attracted considerable attention over the past few years,
achieving superior performance in generic precipitation nowcast with more parameters and increased complexity
for higher accuracy (Cao et al., 2023; Kim et al., 2024). One of the notable breakthroughs is PhyDNet, a model
integrating a physics-constrained Long Short-Term Memory (LSTM) network. Originally developed for pre-
dicting moving object trajectories in the MNIST data set (Guen & Thome, 2020), PhyDNet has been capable of
scoping with challenging task of precipitation forecast (Schultz et al., 2021), demonstrating significant progress in
physics-guided deep learning for weather forecasting. In 2023, the recent Pangu-Weather model outperforms the
numerical weather prediction model the in higher accuracy and shorter prediction time using 33.7 billion
learnable parameters (Bi et al., 2023). Another metamodel Fuxi has achieved longer lead time than ECMWEF in
7500 (9.25-10.5 days) and T2M (10.25-14.5 days) by only using 3 billion parameters (Lei Chen et al., 2023). A
small deep learning model with radar data as input has achieved higher accuracy in 3-hr precipitation nowcasting
than Deep Generative Model for Radar (DGMR) using numerical modeling equations as modules of the model.
Moreover, there are further achievements in forecast for special weather events (Ravuri et al., 2021; Y. Zhang
et al., 2023). TC track forecasting and AR forecast is achieved by GraphCast by converting numerical modeling
grid cells into huge digraphs (Peng et al., 2023). The innovatively designed event-specific models achieve
promising forecast of precipitation induced by the ARs, mesoscale convective systems and the TCs by integrating
their objective identification methods and minimum outer ellipse algorithm (L. Zhang et al., 2024). However,
there is lack in forecasting the TCRP combining objective identification methods and deep learning models.
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Despite the significant achievements in skillful precipitation using deep learning models, there remains a chal-
lenge of revealing the forecast mechanisms of machine learning, also called the black-box problem (McGovern
et al.,, 2019). To make the Al models more white-box, explainable methods are developed, and these are
demanding and highly concerned. Random forest is one of the most interpretable machine learning models, and
these are used for feature importances analysis for prediction of droughts using the inputs and outputs of soil
moisture (Huang et al., 2023). However, deep learning models becomes more uninterpretable with higher
complexity including more layers, functions and modules (Hussain, 2019). Fortunately, solutions to more white-
box deep learning models are proposed like surrogate models, information extraction, feature importance, model
representation, showing pivotal intermediate variables and parameters (also called learned weights) (Huang
et al., 2024). One of the most feasible methods to increase the transparency of deep learning models is to design
explainable attention modules or layers, which has successfully interpreted wave fusion in ideal computational
experiments (Briden & Norouzi, 2021; Shakin et al., 2023; R. Yang et al., 2024).

Combining the lack of Al-based TCRP forecast and high demand of explainability of deep learning models, we
conducted the TCRP forecast method using attention-based deep learning models. Moreover, an explainable
method based on attention module is applied. Section 2 presents the data source, model selection, training
strategies and the explainability method. Section 3 shows the results of the model performance, interannual mean
of precipitation amounts and explainability features, and case analysis on Henan extreme rainfall in July 2021
using explainable deep learning models. Section 4 concludes all our findings and discusses the implications of this
study.

2. Data and Methods

Deep learning has achieved remarkable progress in precipitation forecasting. However, critical limitations persist
in existing research. First, the majority of models (e.g., ConvLSTM, U-Net) rely solely on single-source pre-
cipitation data, failing to adequately incorporate synergistic interactions among multiple physical fields. Second,
forecasting studies targeting specific weather systems remain notably scarce such as the TCRP. To address these
gaps, this study innovatively develops a multi-source data fusion framework based on an enhanced VGG encoder-
decoder architecture. A total of 150 ensemble members were generated through 5-fold cross-validation, with the
top 10 optimal members selected via TS, scoring in the TCRP for post-processing refinement.

In this study, we systematically designed four pivotal experimental groups, which are specifically aimed to
improve the performance on TCRP forecast, including multi-source data inputs (atmospheric variables, moisture
transport and relevant masks, GPM precipitation fields, and topography), SE-Block attention mechanisms,
atmosphere-informed activation functions and spatiotemporal weighted mean squared error (WMSE). Forecast
results of TCRP by models above are evaluated in both pixel-based and neighborhood-based metrics. Moreover,
an interpretability analysis method based on channel attention weights was developed to quantitatively reveal the
attention distribution of SE-Block on multi-physical fields in the TCRP forecasting.

The methodology breaks through the single-source data limitations of traditional precipitation extrapolation
models while establishing a novel technical pathway for refined extreme weather forecasting through deep
integration of atmospheric knowledge and data-driven approaches. The framework demonstrates significant
potential for enhancing TC remote precipitation early warning capabilities in operational forecasting systems,
offering both methodological advancements and practical applications.

2.1. Data

Developed by European Center for Medium Range weather forecast (ECMWF), ERAS reanalysis data is in higher
resolution in 0.25° X 0.25° spatially and 1 hr temporally (Hersbach et al., 2020). We used variables in July—
August-September (JAS) during 2001-2023 at multiple pressure levels with temporal resolution of 6 hrs.
Three-dimensional temperature, geopotential height, relative humidity and wind field are used for input variables
of precipitation forecast. Three-dimensional Wind-field and specific humidity are used for moisture transport
calculation and objective identification of Tropical Cyclone induced remote moisture transport. Precipitation
forecast results from TIGGE retrieval provided by the ECMWF (TIGGE_EC) is used as the numerical weather
prediction benchmark due to its wide acceptance and applications to compare its performance with all deep
learning methods in this study (Buizza et al., 2018; Swinbank et al., 2016).
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The best-track TC data set during 2001-2023 is retrieved from the Shanghai Typhoon Institute of the China
Meteorological Administration (CMA). We used 6-hourly TC positions to identify strong moisture transport of
TCs, which is called TC clusters (TCCs), as well as TC remote moisture transport, which are TRCs that split from
TCCs (Xiao, Zhang, Chen, & Li, 2024; Ying et al., 2014).

The Integrated MultisatellitE Retrievals for Global Precipitation Measurement (GPM-IMERG) is funded by
NASA and the Japanese Aerospace Exploration Agency (JAXA), which offers globally integrated precipitation
observational data (Pradhan et al., 2022). This product enhances the scope of the Tropical Rainfall Measuring
Mission, extending polar observations. We analyzed the calibrated precipitation rate from the final precipitation
L3 V07 product in JAS during 2001-2023, at 0.1° X 0.1° spatial and 0.5-hr temporal resolutions.

The digital elevation model (DEM) ETOPO2v2c_f4 is developed by the National Ocean and Atmospheric
Administration (NOAA) National Center for Environmental Information (NCEI), which is a 64-bit float number
network saved in netCDF format, with 2° X 2’ (1/30° X 1/30°) resolution (National Geophysical Data
Center, 2001).

2.2. Identification Method of TC Remote Precipitation

We used the objective identification method to identify TRCs and their tracks. A concise overview of this
identification method is provided. The identification of intense moisture transport is revised from PanLu algo-
rithm, and then the clusters are segmented from intense moisture transport using maximum gradient method (Y.
Chen et al., 2020; M. Pan & Lu, 2019). Clusters are then matched with TC tracks and assigned as TC clusters
(TCCs), and those clusters that split from TCCs based on temporal digraphs and yet to be identified as TCCs and
over 700 km away from the TCC at the same timestep are identified as TRCs and otherwise seed TRCs (Xiao,
Zhang, Chen, & Li, 2024). These clusters are depicted as masks with pixels inside TRCs as true for further use in
TRC-related features. The TCRP refers to cumulative precipitation in the next 6-hr timestep over the region of the
TRC. There are 253 TRCs in 2001-2020 and 51 TRCs in 2021-2023.

2.3. Deep Learning Architecture

The state-of-the-art deep learning model PhyDNet has been successfully used in precipitation nowcasting and has
shown superior performance to numerical weather prediction models, thanks to the dynamical feature extraction
using physical prognostic equations in the PhyDNet (Schultz et al., 2021). In this study, the model PhyDNet was
directly trained 30 epochs with learning rate of 1 X 10> using the GPM-IMERG in the past 10 hr (10 frames) as
input to predict the TCRP in the next 10 hr (10 frames) to be consistent with the architecture in the previous study
(Guen & Thome, 2020). We calculated the sum of the first six frames of the output as 6-hr precipitation forecast to
compare the performance with that of our deep learning models mentioned afterward in the evaluation stage.

We revised and applied the ChenNet to forecast the TCRP as well as other precipitations over East Asia in
Figure 1 (G. Chen & Wang, 2022), which is based on VGG-like architecture named after a team in ImageNet
Large-Scale Vision Recognition Challenge (ILSVRC-2014) (Simonyan & Zisserman, 2014). This model consists
of two main components: an encoder with downsampling operations and a decoder with upsampling layers. Each
stage of network includes four to five VGG-like blocks depending on data types, which serve as base units for
both encoding and decoding processes. TA Squeeze and Excitation Block (SE-Block) was introduced to enhance
feature representation when all four types of input variables are used (see Table 1).

The first type of input data that the model processes is 6-hourly (0000/0600/1200/1800 UTC) ERAS fields in
multiple pressure levels including temperature (7'), geopotential heights (z), relative humidity (RH), zonal, and
meridional wind components (¢, v), with the array size of 5 X 30 X 193 X 193. The first dimension of arrays
represents the number of channels. The vertical pressures vary from 30 to 1000 hPa (30 vertical grids), and the
horizontal range of training region (TR) is 102-150°E, 8-56°N (see Figure S1 in Supporting Information S1). The
second type consists of moisture transport height characterized by the median height of moisture transport (Hsy),
moisture transport intensity characterized by the Integrated water Vapor Transport (IVT) and the TRC mask (as in
the “TRC” in Figure 1), all of which processed from the ERAS data set. The Hs, is derived from the vertical
structure of the IVT. The TRC masks are derived from the IVT based on the objective identification method in the
previous study (Xiao, Zhang, Chen, & Li, 2024). The IVT is derived from specific humidity (g) zonal and
meridional wind components (u, v). There are two arrays for the second type input, each size of 2 X 193 x 193.
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Figure 1. The VGG-like deep learning network used in this study. Gray boxes represent inputs, outputs, concatenation, and
2D processing operations. Red boxes represent VGG-like encoder and decoder, convolutional layers, batch normalization
layers, and non-atmospheric-informed activation functions; the blue boxes represent pooling layer and upsampling layers;
yellow boxes represent atmosphere-informed activation functions. At least one type of variable is input variable in the red
dashed box; yellow dashed box represents optional data types; SE-Block in the blue dashed box applies only if there are four
types of input variables (n = 4). (a) Details of the VGG-Ex2 block where the layers in black dashed box repeat twice.
(b) VGG-Ex4 block that is specifically used in the optional TRC-related features. (c) VGG-Dx2/4 showing the same
architecture as (a) but existing in the decoder block. (d) Architecture details of the SE-Block.
The first array consists of Hs, and the TRC mask that occupies the first dimension of the array, and the second
array consists of the IVT and the TRC mask. The third type of data is GPM-IMERG cumulative precipitation in
the past 6 hrs derived from calibrated half-hourly rainfall rate, with the array size 1 X 480 X 480. The last type is
one type of the DEM data ETOPO, which is time-independent with array size 1 X 1,440 X 1,440. The range of
Table 1
The List of Data and Variables Used in This Study
Data types Variables Derived from Array size
ERAS5 Temperature (T); N/A 5% 30 % 193 x 193
Geopotential heights (z);
Relative humidity (RH);
Zonal and meridional wind components (u, v)
TRCf First part: Hy, and TRC mask Hs, and TRC mask derived from the IVT; 2 X% 193 x 193,
Second part: IVT and TRC mask IVT derived from Specific humidity (q), 2x 193 x 193
Zonal and meridional wind components (u, v)
GPM 6-hourly precipitation Half-hourly calibrated rainfall rate 1 x 480 x 480
DEM Elevation (in m) N/A 1 X 1440 x 1440
XIAO ET AL. 50f 19
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training data are all the TR among all types of data (each abbreviated as ERAS, TRCf, GPM, and DEM), roughly
ordered from high to low vertical levels. At least one data type of ERAS and GPM is mandatory shown in the red
dashed boxes, and the remaining data types are optional shown in yellow dashed boxes. The output variable is the
GPM-IMERG cumulative precipitation in the next 6 hrs with the array size 1 X 480 X 480. The lead time of these
VGG-like models are 6 hrs.

The training set covers JAS in 2001-2020 with 7,360 samples in total, and the testing set covers JAS in 2021—
2023, with the sample size of 1,104. Part of the training set split as validation set for 5-fold cross validation.
The number of years share the same remainder mod 5 for each fold. For instance, the validation set of the fifth fold
consists of the year 2005, 2010, 2015, and 2020. This training strategy can contain multiple phases of atmospheric
oscillation similar to El-Nino. We trained 30 epochs for each fold and save each fold and each epoch, in total 150
parameter sets (also called “members”) for precipitation forecast and further fine tune. This methodology re-
sembles ensemble weather forecast to select “good” members for combination, and also resembles ensemble
machine learning (Lin et al., 2024; Zingl, 2023).

The VGG-like blocks are the base blocks throughout all stages of deep learning network, which consists of the
first-half encoder with downsampling and the second-half decoder with upsampling. The convolutional layer is
3D if the data type is ERAS and otherwise 2D. In the first stage of our model, each encoder block (see Figure 1a)
consists of convolution, batch normalization and Rectified Linear Unit (ReLU) activation function assigning
negatives as zeros, repeating two or four times depending on the depth of encoder phase or decoder phase, then
followed by a maxpooling layer. The kernel size of all other maxpooling layer is two, except for the first (five)
encoder block VGG-Ex2 in the GPM, the first (three) and the second (five) encoder block VGG-Ex2 in the DEM
for the alignment of the array sizes in Figure 1. The batch normalization layers ensure a stable statistical dis-
tribution of activation values in the whole training process to allow the deep learning models to be less stringent
during initialization, thereby reaching high computing performance and less computational cost necessary for the
training phase. For the data type TRCH, the last activation function right before concatenation and 2D operation (as
in Figure 1b) is standard Gaussian function (Hs, and the TRC mask) and sigmoid function (IVT and the TRC
mask), consistent with non-linear fitting functions in the past research, which is now called atmospheric-informed
activation functions (Xiao, Zhang, Chen, & Li, 2024).

In the second stage, each decoder block shares the same repetitions as that of encoder blocks, but with upsampling
layer at the end of the block (see Figure 1c). The scale factor of the all other upsampling layer is two, except for 2.5
for the final upsampling layer. The optional attention module is called Squeeze and Excitation Block (SE-Block),
which squeezes the inputs by global average pooling for each channel and excites them through two dense layers
to dimensions of 32 X 1 X 1 and then 256 X 1 X 1, each followed by a ReLU layer to and finally sigmoid activation
function for channel-wise multiplication to rescale the input array (see Figure 1d) to filter and rearrange the
signals of these channels (such as the RGB and infrared channels in the pictures) (Hu et al., 2018). This module
operates only when the input variables consist of four types.

2.4. Objective Functions and Evaluation Metrics

We used mean squared error (MSE) to evaluate the similarity between forecasted values and GPM-IMERG
values at the same timestep in the testing set. Additionally, the Threat Score (TS, also called critical success
index CSI) is used to evaluate the hit rate of precipitation over a set threshold (Han et al., 2022; X. Pan
et al., 2021). These two metrics are used to evaluate the forecast of all precipitation and the TCRP of each cross-
validation member and that of fine-tuned forecast results combining those members. Neighborhood threat score
(NTS) is a metric that considers any of events that forecasts true or false to compare with the centered “ground
truth” true or false within a 3 X 3 window for each pixel, which is only used after the postprocessed results. The
formula is shown as the following:

1 N 2
MSE:ZZJ(PU‘_PU‘)’ (1)
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Where P, s the precipitation forecast values in the longitude-latitude grid (i, ) , P;; is the GPM “ground truth” in
0.1° except for evaluation on the TIGGE_EC, where the resolution is bilinearly interpolated into 0.25°, n is the
number of longitude-latitude grids. WMSE is weighted MSE function, only used as a modified objective function
with the coefficient f; that favors high climatological TRC frequency in JAS during 2001-2020 (see Figure S2 in
Supporting Information S1) and instantaneous heavy precipitation in “ground truth.” TS, refers to Threat Score
over precipitation threshold p € {1,5,10,25} in mm, with better forecast with larger TS,,, which is only used as
evaluation metrics. NA represents the number of true positives, NB represents the number of false positives, NC
represents the number of false negatives. NA' represents the number of true positives but with true center “ground
truth” and any of the true forecast value within the 3 x 3 window, and so are NB and NC’. We evaluated forecast
results in the JAS during 2021-2023 with the range of the evaluate region (ER) over 104°-136°E, 16°—48°N.

2.5. Post Processing Method

The frequency of none and light precipitation is much higher than that of heavy precipitation, causing trained deep
learning models to underestimate the values of heavy precipitation, especially the more extreme TCRP concerned
by public (Xiao, Zhang, Chen, & Li, 2024). The tuning strategy is widely used to improve the overall performance
in machine learning predictions (G. Chen & Wang, 2022). Therefore, we selected at most 10 best models from
cross-validation with the smallest MSE and TS,5 > 0 and tuned the precipitation to enhance the overall perfor-
mance especially for the heavy precipitation. The precipitation is tuned following the equations to minimize the
MSE of tuned precipitation:

Py = wibPy, )
k
—\ b
aP,\ —
TP =11 Y\ P,
( + Pmax) " (6)
MSErp = ) (TP; — Py, (7)

i

S S{(TP; = Py)?

WMSEp =2 ®)
TP Zﬁ/
ij
w,a,b = argmin MSEqp, 9)
w,a,b

Where P,, is the weighted average values of forecasted precipitation, w; are learned weight parameters for the
tuning process as components of the vector w. TP is tune cumulative precipitation in 6 hrs for each training
sample, P, is the maximum precipitation over the training sample, a and b are learned parameters for the
multiple and the exponent. We minimize the objective function that is consistent with that during the training of
VGG-like models to find the corresponding optimal parameters w, a, and b, subject to constraints that the sum of
the w components equals to one, a >0 and 0 <b < exp(1) to ensure that the maximum tuned precipitation in-
creases and get closer to the maximum GPM “ground truth.”
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2.6. Explainability Method of SE-Block

SE-Block consists of global average pooling on each channel and dense (linear) layers followed by ReLU and
finally sigmoid activation function to skew and readjust the coefficients of each channel to obtain the rescale
vector R with size of 256 X 1 X 1 (Hu et al., 2018), which is used for channel-wise multiplication to rescale the
input array x in 256 X 12 X 12 (see Figure 1d), followed by VGG decoder blocks to predict 6-hourly cumulative
precipitation. Meanwhile, explainability has been a challenging issue on black-box and complex deep learning
models instead of relatively simple and white-box linear regression and random forest (Hussain, 2019; Salih &
Wang, 2024). Inspired by recent successful applications on SE-Block, we used explainability method on SE-
Block in VGG-like models to further investigate the attention distribution on four types of input data,
assuming the same number of channel and bytes represent the same amount of information (Briden & Nor-
ouzi, 2021; Shakin et al., 2023).

For all the components of R, we derived the attention distribution to ERAS, TRCf, GPM, and DEM data type by
summing up the partial derivative of R's to x's of each channel %, where x; (1 < j < 256) is obtained from global
]

average pooling (Figure 1d). Every 64 channels represent the information of ERAS, TRCf, GPM, and DEM,
respectively. We used Equation 11 to calculate coefficients, which is the expanded version in Equation 10 using
the principle of backward propagation, which was initially used in objective function optimization (details are in
the Supporting Information S1).

OR, _ <~ OR; 0y dfy 0o (10

coefy; = ), — ’
YT & ox; T Aoy Oy 0y 0,

COGfkj = Z axj = ZRI(I - R,)(Zh: W]l-hW()h]J(Z W()thj > O)), (l 1)
i J

1

Where coefy; is the sum of x; coefficients for the selected model k by summing up % , the partial derivative of the
7

rescaled results R; to x;, and the remaining multiples are partial derivatives for each layer in the SE-Block
following the chain rule. R; and y, represents the output and input of sigmoid activation function, respectively.
wij;, and wy,,; represent the second and the first layer parameter matrix, respectively. /| (yo > 0) represent identity
function, one for the true statement and zero for the false statement. The tuned coefficients over each of 256
channels are calculated similarly to tuned precipitation in Equation 5.

Feature importances (FI), mostly applied in random forest and also applied in attention-based deep learning
networks, offers a straightforward contribution percentages of each input variable or feature widely used in
studies (Huang et al., 2023; L. Zhang et al., 2024). As an analog and combining the sum of squares in wind speed
calculation and distance calculation in Cartesian coordinates, we summed up the square of coefficients over each
channel to obtain the FI values in SE-Block for each training, validating or testing sample.

64(1+1) ——72
Djmoii+1 O/ |

FIl =
256 2
21 coef;

(12)

Where ij is square of the coefficient of tuned results at channel j using similar principle to that of Equation 5
derived from coefy;, [ is the number corresponding to data types from O to 3, increasing with ERA5/TRC{/GPM/
DEM. The calculation of FI of tuned precipitation results follows the calculation of the weighted average vector w
in the post processing phase.

2.7. Experimental Settings

We set deep learning groups of VGG-like models (as in Table 2), which aims to improve the performance on the
TCRP, to investigate the effect of the following effects on models' performance on TCRP forecast, including the
diversity/number of data types, existence of SE-Block, atmosphere-informed activation functions right before
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Table 2

The Experiments Consisting of Model Numbers, Model Names, Input Data, Whether SE-Block Operates, Last Activation in the TRCf Encoding Block and Objective

Functions

Experiments

Model SE- Last activation function in Objective
number Model name Input data block the TRCf encoding block  function

Number of input data types

Replacing atmosphere-
informed activation
functions

Adding SE-Block

Modifying the objective function

1 VGG_E ERAS No ReLU MSE
2 VGG_P GPM No ReLU MSE
3 EP ERAS, GPM No ReLU MSE
4 EPT ERAS, GPM, DEM No ReLU MSE
5 ERPT ERAS, TRCf, GPM, DEM No ReLU MSE
6 ERPT_SE ERAS, TRCf, GPM, DEM Yes ReLU MSE
7 ERPT_SEG  ERAS5, TRCf, GPM, DEM Yes Gaussian, Sigmoid MSE

8 ERPT_SEGW ERAS, TRCf, GPM, DEM Yes Gaussian, Sigmoid WMSE

data concatenation in Figure 1 and the custom objective function combining TRC frequency and “ground truth”
precipitation levels.

The first group is the first control group of the number of data types, whose input data is only ERAS5 (No. 1:
VGG_E) following the previous study (G. Chen & Wang, 2022). The second group is the second control group,
with the input data only GPM Precipitation (No. 2: VGG_P) to be consistent with commonly used deep learning-
based precipitation forecast models only with precipitation itself (Cao et al., 2023; Ravuri et al., 2021; Y. Zhang
et al., 2023). The rest are experimental groups consisting of VGG-like models with input variables ERAS and
GPM data (No. 3: EP), the VGG-like model with input variables ERAS, GPM, and Topographical DEM data (No.
4: EPT), and the VGG-like model with input variables ERAS, TRCf, GPM, and DEM data (No. 5: ERPT). For the
effects of SE-Block, No. 5 is the control group and the VGG-like model with SE-Block is the experimental group
(No. 6: ERPT_SE). To investigate the effect of atmosphere-informed activation functions, No. 6 is the control
group with activation function ReLU for VGG-Ex4 in Figure 1c, and the experimental group is the VGG-like
model with SE-Block and the atmospheric-informed activation functions of Gaussian and sigmoid in VGG-
Ex4 in Figure 1c (No. 7: ERPT_SEG) following the fitting relationship between moisture transport character-
istics and precipitation (Xiao, Zhang, Chen, Chen, et al., 2024). The effect of the objective function is investigated
by comparing the model No. 7 control group and the ChenNet with SE-Block, activation function of Gaussian and
sigmoid and the modified objective function WMSE (No. 8: ERPT_SEGW).

3. Results
3.1. Evaluation of Precipitation Forecasting Performance in Deep Learning Models

The model VGG_P is used to determine the optimal learning rate among 2.5 X 107, 5 x 10™* and 1 x 107> (see
Figure S3 in Supporting Information S1), as lines of VGG_P are the smoothest among all deep learning groups
due to homogeneous precipitation inputs and outputs. The results show that VGG_P with learning rate of 5 x 10™*
converges to optimal values at 10-20 epochs, right in the middle of 30 epochs, which is why we chose 5 X 10™* as
the learning rate for remaining deep learning groups (see Figure S3 in Supporting Information S1).

We selected the most optimal PhyDNet model, which is at 20" epoch (see Figure S4 in Supporting Information S1),
and then selected up to 10 best “members” generated from cross validation consisting of 5 folds and 30 epochs for
each VGG experiment (see Table S1 in Supporting Information S1), to fine-tune the optimal objective functions of
VGG models, whose overall performance is shown in Table 3. In general, all VGG-like models in this study show
0.05-0.2 higher TS and NTS score (higher performance) over all thresholds on TCRP forecast than that of TIG-
GE_EC, but 23.3%-43.6% higher MSE (lower performance) than that of TIGGE_EC (54.71). Despite of shorter
time range of past precipitation inputs, coarser resolution and fewer frames of VGG_like models (one frame) than
that of PhyDNet (six frames), all VGG_like models in general show similar model performance to that of PhyDNet,
validating the capability of our deep learning models in forecasting the TCRP in the next 6 hrs. The deep learning
model ERPT_SE (with SE-Block) achieves the best performance on TCRP in the five metrics of TS5, TSy, NTS,,
NTSs, and NTS, , with the values above 0.46, improved by 0.05-0.07 compared to VGG_E, and 0.04-0.08 higher
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Table 3
Performance of Models on TCRP in MSE Metric and TS Metrics Over 1, 5, 10 and 25 mm Threshold

Model MSE TS, TS, TS, TS,s NTS, NTS;  NTS,,  NTS,q

TIGGE_EC 54.71 0.4426 0.3933 0.2830 0.1413 0.3085 0.3121 0.2742 0.1377
PhyDNet 74.38 0.4706 0.4683 0.4718 0.2997 0.4007 0.4117 0.4293 0.2980
VGG_E 78.54 0.5082 0.4671 0.4239 0.0719 0.4591 0.4235 0.4110 0.0857
VGG_P 74.26 0.5470 0.4791 0.4771 0.1453 0.4947 0.4295 0.4491 0.1620
EP 71.90 0.5409 0.5105 0.4680 0.1714 0.4875 0.4612 0.4421 0.2039
EPT 73.64 0.5514 0.5266 0.4708 0.1260 0.4974 0.4751 0.4532 0.1397
ERPT 68.81 0.5248 0.5090 0.4893 0.2458 0.4741 0.4578 0.4509 0.2701
ERPT_SE 68.74 0.5502 0.5283 0.4936 0.2061 0.4982 0.4782 0.4669 0.2238
ERPT_SEG 69.71 0.5183 0.4835 0.4922 0.2012 0.4661 0.4294 0.4506 0.2163
ERPT_SEGW 67.50 0.4967 0.4765 0.4813 0.2360 0.4476 0.4236 0.4362 0.2425

Note. Models that perform the best are bolded in each metric. Only deep learning-based models are bolded if they perform the
best in a metric.

than that of PhyDNet, implying the best performance mainly over middle TCRP thresholds due to the presence of
the SE-Block. The model ERPT, with most diverse types and addition of TRC-related features including TRC
masks, performs the best in two metrics of TS,5 and NTS,5 with the values above 0.24, improved by 0.17-0.19
compared to VGG_E, implying the superior performance in extreme TCRP to all other models in this study except
to PhyDNet, with TS,5 and NTS,5 almost 0.3. The model EPT (three types of data input) achieves the highest TS;.
The model ERPT_SEGW achieves the lowest MSE (67.50) among all this study's deep learning models, 9.25%
smaller than that of the state-of-the-art PhyDNet, but still 23.3% larger than the MSE of the TIGGE_EC. It is worth
noting that this model also achieves the third highest TS,5 and NTS,5 among all this study's deep learning models,
and improved by 0.16 compared to VGG_E, implying that modifying the objective function to WMSE almost
restores the negative effects of adding SE-Block and replacing activation functions on performance on extreme
TCRP. The model VGG_P, whose inputs and outputs are precipitation only, improves most significantly in TS,
and NTS,5 by almost 100% compared to VGG_E. Results above show the significant effect on TCRP performance,
especially extreme precipitation by diverse data inputs (also with the addition of TRCf variables with TRC mask),
adding SE-Block and modifying objective function to WMSE.

3.2. Interannual Analysis in the Testing Set

After the overall performance over the ER is analyzed, Figure 2 further depicts the spatial distribution of annual
mean TCRP of GPM-IMERG “ground truth”, TIGGE_EC and VGG-like models in the testing set. Large-scale
features are mostly conveyed by PhyDNet and all VGG-like models in this study, consistent with previous
findings that deep learning models show promising precipitation values in general statistics (Ayzel et al., 2020;
Wang et al., 2023; S. Yang & Yuan, 2023). The annual mean TCRP forecasted from PhyDNet and VGG-like
models show high similarity of values and spatial distribution to that of GPM-IMERG. There is over-
estimation of light precipitation events generated from PhyDNet by 183% and eight VGG-like models by 123%—
197% for annual mean TCRP compared to that of GPM-IMERG over the ER (Figure 2a), which is likely the
reason of higher MSE than that of TIGGE_EC (Table 3). This overestimation is unlike slight and negligible
underestimation of TIGGE_EC by 1.5% (Figure 2b). VGG_E and the EPT achieve the smallest annual mean
TCRP in central China with annual TCRP forecast values 1.59 and 1.45 mm yr~' over the ER, respectively
(Figures 2d and 2g). The area of 30-50 mm yr~ in the central part is slightly larger for four models VGG_P, EP,
ERPT, and ERPT_SEG (Figures 2e, 2f, 2h, and 2j). It is worth noting that ERPT_SE and ERPT_SEGW nowcast
over 50 mm yr_1 of annual mean TCRP in central China like that of GPM-IMERG, implying the effect of Henan
torrential rainfall in July 2021 (Figures 2i and 2k). Meanwhile, the annual mean TCRP of the ERPT_SE and
ERPT_SEGW are 1.54 and 1.94 mm yr~' over the ER, respectively.

To further reveal the prediction mechanisms underlying the models with SE-Block (ERPT_SE, ERPT_SEG and
ERPT_SEGW), the interannual mean coefficients and intermediate output X's (as in Equation 8) in JAS during
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Figure 2. Geographical distribution of annual mean TCRP of (a) GPM-IMERG, (b) TIGGE_EC, (c) PhyDNet, and (d—k) eight VGG-like models in the testing set.
Upper-left text in each panel shows the annual mean TCRP over the ER.

2021-2023 (time range of the testing set) are analyzed, as the dot product of the coefficients and X's in 256-
dimensional (channels) space affects the values of R's, which further determines the results of precipitation
nowcast as shown in Figure 2 and their performances shown in Table 3. Roughly 80% of coefficients are observed
as negative in ERTP_SE (Figure 3a). The largest variations of channel-wise coefficients are observed in the
channels of TRCf (TRC features) and GPM (precipitation in the past 6 hrs), ranging from —0.2 to 0.4, which
further validates that the FIs of the TRCf and the GPM are the largest (39.31% and 56.89%) among four types of
data. Moreover, X's GPM-related channels are in average the largest (0.5-0.8) among four types of data, followed
by the TRCf (0.4-0.8), ERAS (0-1) and DEM (0-0.3) (Figure 3b), implying the information of TRC features and
past precipitation are amplified relatively to ERAS and DEM for precipitation forecasting. Replacing ReLU
activation functions with atmospheric-informed Gaussian and sigmoid homogenizes the coefficients and X's of all
channels (see Figures 3c and 3d). It is worth noting that there are lower FIs in TRCf and GPM and higher FI in
DEM, implying that the replacement of activation function in TRC features can reduce implicit topographical
features of TRCf and GPM, making SE-Block distribute more attention to topographical information (DEM in
14.40%) and 3D atmospheric information (ERAS in 5.15%). Modifying objective function to WMSE makes SE-
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Figure 3. Interannual mean coefficients (a, c, ) to multiply intermediate variables Xs (b, d) of ERTP_SE (a, b), ERTP_SEG
(c, d) and ERTP_SEGW (e, f). ERAS, TRCf, GPM, and DEM corresponds to four input data types in Figure 1. Black dashed

lines show the channels of moisture transport height and intensity, respectively.
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Figure 4. 6-Hourly cumulative precipitation of (a) GPM-IMERG, (b) TIGGE_EC, (c) PhyDNet, and (d—k) VGG-like models starting from 20 July 2021 at 1800 UTC.
The dashed line represents the boundary of TRC—“In-fa.”

Block pay more attention to ERAS (8.27%) and DEM (20.35%) by removing implicit ERAS and DEM infor-

mation in TRCf and GPM data (Figures 3e and 3f). The same analysis will be conducted in the case of Typhoon
“In-fa.”

3.3. Performance Analysis in the TCRP Induced by Typhoon ‘“In-fa” (2021) in Henan Province

We further analyzed the case of torrential rainfall in Henan Province on 20 July 2021 from 1800 UTC, which was
The TCRP induced by Typhoon “In-fa” in Figure 4. Compared to GPM-IMERG “ground truth” (Figure 4a), the
area of precipitation forecast values over 25 mm is significantly underestimated in the TIGGE_EC (Figure 4b).
Results show that The TS,5 of TCRP surrounding Henan Province generated from PhyDNet is 0.46 (Figure 4c).
Meanwhile, precipitation generated from PhyDNet shows detailed features in the southwest and the heavy TCRP
(over 25 mm) in the central region (Figure 4c). All deep learning models including PhyDNet and all the VGG-like
models in this study can simulate precipitation values above 25 mm within TRC—“In-fa” in central China except
for VGG_E with large precipitation area and low spatial peak precipitation values less than 25 mm (Figure 4d).
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The area of heavy precipitation (25 mm) is low in VGG_P (Figure 4¢), with TS,5 of the TCRP 0.16 surrounding
Henan Province, implying deep learning models with precipitation the only variable of the inputs and outputs tend
to underestimate the precipitation amount and the area of heavy precipitation. The area of heavy precipitation
generated by ERPT is the largest among the first five models with TS,5 of the TCRP 0.30, which are used to
investigate the effects of the number of input data (Figure 4h). Each of effects such as presence of SE-Block, the
replacement of activation functions and the modified WMSE objective function makes the area of precipitation
larger and more similar to that of GPM-IMERG “ground truth” (Figures 4i—4k). Among all VGG-like models in
this study, the largest TS,5 of TCRP surrounding Henan Province is generated from ERPT_SEGW with the value
of 0.44 (Figure 4k). Scattered precipitation regions (as shown in the “ground truth”) in the northeast and southwest
are interpreted as tails of the central precipitation region in all VGG-like models in this study, implying that there
is large potential to improve the detailed precipitation features of VGG-like models in the future.

Explainability analysis using SE-Block is also conducted in the case of Henan heavy rainfall as in Figure 5. The
overall results of this specific event are close to the interannual mean values in Figure 3. However, the anomalies
from the interannual mean are unnegligible. Roughly 80% of the coefficients in ERPT_SE are in positive anomaly
by 0-0.015, with less than 10% of interannual mean (Figure 5). In this same model, SE-Block distribute 36.22% of
the attention to TRC-related features, 3.09% less than interannual mean. ERAS5 and DEM are distributed by 1%
less compared to the interannual mean. Roughly two thirds of X's is larger than interannual mean by —0.2 to 0.2,
ranging from —40% to 25% in percentage (Figure 5b). The coefficients in ERPT_SEG are mostly in positive
anomaly with 1%-3% less (Figure 5c) than negative interannual mean values, which results in less than 0.1%
deviation from interannual mean FIs in JAS during 2021-2023 (Figure 3c). This is likely due to less variant X's
(Figures 3d and 5d), the only variable affecting the coefficients through ReLU function in Equation 9 that results
from the replacements of activation function according to nonlinear relation between moisture transport height/
intensity and precipitation (Xiao, Zhang, Chen, & Li, 2024). There are less than 17% of anomalies of X's in
ERPT_SEG ranging from —0.1 to 0.2, with roughly two thirds of X's in positive anomalies. Moreover, there are
less than 2% of interannual mean coefficients in anomalies of ERPT_SEGW and less than 1% deviation from the
interannual mean FIs of ERAS and TRCT, but over 2% deviation from the mean FIs of GPM and DEM (Figure 5e)
and also larger temporal variations (see Figure S5 in Supporting Information S1), implying that the sensitivity of
attention distribution to GPM and DEM to Henan extreme rainfall partly restores when the objective function is
modified to WMSE, which is likely why the TS,5 of the TCRP restore in ERPT_SEGW (Table 3). Roughly 80%
of X's over 256 channels are larger than interannual mean, with anomalies less than 20% of interannual mean
(Figure 5f). The overall results show that replacing the activation of TRC-related features with atmospheric-
informed Gaussian and sigmoid functions and modifying the objective function to WMSE can result in more
event-based anomalies from interannual mean in coefficient, FIs and X's.

It is essential to further illustrate the input meteorological variables during Typhoon “In-fa” induced remote
rainfall. The circulation pattern on 20 July 2021 at 1800 UTC and the moisture transport characteristics is shown
in Figure 6. The geopotential height at 500 hPa is relatively high in the northeastern part due to the presence of
Typhoon “In-fa” over western North Pacific (see Figure 6a). The region of TRC—"In-fa” highly overlaps to the
heavy rainfall over Henan Province, which further validates the accuracy of TRC objective identification algo-
rithm in the previous study (Xiao, Zhang, Chen, Chen, et al., 2024). The moisture transport height Hs is generally
high over the subtropical high and the southwestern plateau, whereas low over the eastern coastal region,
especially the moisture transport path from In-fa to the TRC—“In-fa.” (see Figure 6b) The Hs, over TRC—“In-fa”
is 1.9-3.0 km, showing the northwestern high and the southeastern low, which highly coincides with the local
topography. The strongest transport intensity is in the region of TRC—“In-fa” apart from the region of In-fa as in
the southeastern ocean. The overall circulation patterns and moisture transport characteristics have validated the
importance of TRC-related features (Hs,, IVT, and TRC masks) as input variables in the deep learning models
given extremely limited cases of TCRP events even in 20-year timescale.

4. Conclusions

This study enhances the forecast of the TCRP by improving the VGG-like model, incorporating additional input
data types, adding SE-Block, adjusting activation functions based on meteorological knowledge, and modifying
the objective function. By using explainable methods like feature importance analysis, the model's transparency
increases to analyze the mechanisms of higher TCRP predictability using distribution allocation to multi-modal
input data, inspired by random forest and deep learning studies (Salih & Wang, 2024; L. Zhang et al., 2024). The
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Figure 6. Horizontal distributions of (a) 6-hourly rainfall overlapped with 500 hPa geopotential height and (b) Hs, (medium
moisture transport height) overlapped with moisture transport intensity (black arrows) at 1800 UTC on 20July 2021. The
magenta dashed contour represents the boundary of TRC—“In-fa” and the red dot represents the track of Typhoon “In-fa.”

results show significant improvements in precipitation prediction accuracy and stability, particularly highlighted
by TS metrics such as TS, and TS5, demonstrating strong performance at low and medium precipitation levels.
The following are the main conclusions in this study:

¢ In general, the TCRP performance of all this study's deep learning models are better than that of TIGGE_EC.
The model ERPT is the best at extreme TCRP forecast among VGG-like models in this study, implying the
positive effects of adding multi-source data, especially TRCf variables with TRC masks. Adding SE-Block
can enhance middle-range TCRP forecast, but the performance of the ERPT_SE decays. ERPT_SEGW
achieves the smallest MSE, 9.25% smaller than PhyDNet, whereas also achieving near-best performance in
extreme TCRP among VGG-like models in this study. Despite shorter time coverage, coarser resolution and
fewer frames of the ERPT_SE than PhyDNet, the MSE and the TS of TCRP over middle (10 and 5 mm) and
lower (1 mm) thresholds still show superior performance to that of PhyDNet.

o Interannual mean TCRP is overestimated for all VGG-like models in this study, which is the opposite of
TIGGE_EC. Modifying objective function to WMSE (ERPT_SEGW) can improve the TCRP performance.
Explainability analysis shows that replacing atmospheric-informed functions can make FIs of ERAS5 and DEM
larger (for ERPT_SEG) without significantly paying less attention to TRCf, which is the core mechanism to
improve TCRP forecast of VGG-like models.

e The TS of VGG-like models during Henan heavy rainfall in July 2021 is significantly higher than that of
TIGGE_EC, especially the model ERPT_SEGW that is 0.44 higher than that of VGG_E and TIGGE_EC,
implying positive overall effects of TCRP improvement strategies. This TS score of ERPT_SEGW is only
0.02 smaller than that of PhyDNet. Precipitation distributions generated from PhyDNet show detailed fea-
tures. This Explainability analysis in July 2021 show that there are larger temporal variations of Fls, co-
efficients and intermediate outputs in GPM and DEM of the model ERPT_SEGW. Those analyses above and
TRC-related feature analysis show that GPM, DEM and TRCf are important for forecasting the TCRP.

Although these achievements are notable, limitations of VGG-like models still remain. The detailed precipitation
features in GPM-IMERG “ground truth” are grasped as overly smoothed tails of large-scale features in our
forecasting results, which prevents the further decrease of MSE. TRC predictions for over two timesteps (lead
time of at least 12 hr) need to be developed for precipitation forecast for over two timesteps, so that the effects of
the attention modules are validated more adequately.
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