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Abstract Precipitation is a key driver of the global water cycle and energy circulation, yet its complex
formation and dynamic lifecycle make both observation and simulation challenging. Tracking precipitation
events and analyzing their lifecycle stages (development, maturity, and dissipation) are essential for
understanding precipitation dynamics. This study proposes a morphological precipitation event extraction
(MPEE) method and a lifecycle fitting model, applied to CONUS404, Integrated Multi-satellitE Retrievals for
GPM, and ECMWF Reanalysis 5 from 2001 to 2021. Intercomparison results confirm the method's robustness,
with most correlation coefficients exceeding 0.5 and most root mean squared errors less than 0.7 mm/hr,
between extracted events and simulated life cycles. K-means clustering reveals four precipitation types:
common, high-peak, long-duration, and slow-developing events with delayed peaks. The method effectively
captures precipitation variability across data sets and provides a scalable approach for studying long-term
precipitation trends. This work lays a foundation for analyzing climate-scale precipitation lifecycle changes,
improving our understanding of precipitation dynamics and their implications for climate variability.

Plain Language Summary Precipitation is a vital part of the Earth's water cycle, but tracking and
understanding how rain events form, grow, and fade is challenging. This study introduces a new method to
identify and analyze precipitation events over the U.S. using a shape-based technique. By applying this
approach to three different rainfall data sets, the study finds that it reliably captures rainfall patterns and helps
distinguish different types of precipitation events. The method also provides insights into how rainfall behaves
over time, which can improve climate studies and weather predictions. Despite some limitations in capturing
small or complex events, this research offers a valuable tool for studying long-term precipitation trends and
understanding the effects of climate change on rainfall.

1. Introduction

Precipitation is one of the most essential components of the ecosystem and serves as a key driver of both the
global water cycle and energy circulation (Feng et al., 2016; Huffman et al., 2015; Zhu & Ma, 2022). While
precipitation events naturally evolve continuously in space and time, most studies analyze precipitation on a
pixel-by-pixel basis, neglecting the spatial and temporal interconnections between pixels (Li et al., 2022; Tang
et al., 2016; Zhu et al., 2021). This limitation hinders an integrated and comprehensive understanding of the
precipitation lifecycle and its responses to climate change. To address this gap, it is essential to develop advanced
methods that can effectively extract precipitation events from gridded precipitation data sets and capture pre-
cipitation lifecycle stages (development, maturity, and dissipation) (McAnelly & Cotton, 1989; Prein et al., 2017).
However, this task remains challenging due to the complexity in precipitation processes and data sets.

The development of object-based precipitation extraction methods has evolved from static identification to dy-
namic tracking, continuously improving the ability to capture the spatiotemporal continuity of precipitation
systems (Laverde-Barajas et al., 2019; Zahraei et al., 2013). Davis et al. (2006a, 2006b) developed the Method for
Object-based Diagnostic Evaluation (MODE), which defined precipitation objects as contiguous rainy areas and
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was applied to analyze mesoscale precipitation events. Later advancements incorporated the temporal dimension,
allowing for the tracking of precipitation system lifecycles, such as the improvements made to MODE by Skok
etal. (2009, 2010), and further refinements by Skok et al. (2013) to optimize the identification of tropical cyclones
by decomposing full 3D objects into smaller components. To enhance tracking accuracy, Clark et al. (2014)
introduced the MODE Time Domain (MTD) method, which integrated lifecycle tracking of precipitation systems,
a technique later refined by Ayat, Evans, and Behrangi (2021) and Ayat, Evans, Sherwood, and Behrangi (2021)
to account for splitting and merging effects in precipitation systems. Nevertheless, recent applications have
revealed that even the enhanced MTD framework still suffers from several practical limitations. For example, Li
et al. (2023) showed that MTD's fixed-threshold segmentation tends to fragment rapidly evolving convective
clusters during the re-intensification of Hurricane Florence, whereas R. Li et al. (2025) demonstrated that MTD
may mis-represent the life-cycle-dependent error patterns of multi-satellite precipitation products because of its
sensitivity to object splitting and temporal overlap. These studies highlight the need for event-extraction ap-
proaches that are less threshold-dependent and can more faithfully capture the complete evolution of both large
and small precipitation systems.

More recently, researchers have employed increasingly flexible tracking approaches, such as Cui et al. (2020)
using the Flexible Object Tracker (FLEXTRKR) method (Feng et al., 2018) to study mesoscale convective
systems (MCSs), and Li et al. (2015, 2016) applying the watershed transformation to identify precipitation ob-
jects. Zhou et al. (2019) introduced the recursive-fractal approach, leveraging Integrated Multi-satellitE Re-
trievals for GPM (IMERG) data to extract extreme precipitation events. These advancements demonstrate that
object-based methods provide a more comprehensive understanding of the evolution of precipitation systems.
While object-based tracking methods have significantly advanced precipitation analysis, most existing ap-
proaches focus on extreme precipitation events, MCSs, or large-scale precipitation systems (Wang et al., 2023).
However, given the transient characteristics, elevated noise levels, and frequent merging or fragmentation of
small-scale precipitation, current methods still require methodological refinement to accurately identify and track
smaller events.

In recent years, research leveraging event extraction methods to study precipitation lifecycles has gained mo-
mentum, offering insights beyond traditional statistical analyses for climate change studies and disaster man-
agement. Roca et al. (2020) highlight that in tropical regions, precipitation systems exhibit complex life cycles
that directly influence local weather patterns, resource availability, and ecosystem health, underscoring the need
to incorporate lifecycle dynamics into climate studies. Similarly, Hirata and Grimm (2016) demonstrate that
atmospheric anomalies play a crucial role in shaping extreme rainfall events, making lifecycle analysis vital for
predicting and mitigating risks such as flooding and droughts. Almazroui et al. (2012) show that modeling the
lifecycle of extreme rainfall events helps explain temporal and spatial rainfall variability, offering practical in-
sights for urban planning and disaster risk management. Additionally, Post and Knapp (2020) emphasize the role
of precipitation timing and intensity in ecological processes, particularly in semi-arid regions, where under-
standing precipitation lifecycles supports water management and sustainability efforts. However, the automatic
determination of lifecycle analysis for various precipitation events remains challenging today, as it heavily de-
pends on the quality of extracted precipitation events and is constrained by the complexity of diverse precipitation
patterns.

Motivated by a detailed analysis of precipitation event lifecycles, this study aims to (a) develop a novel
morphological precipitation event extraction (MPEE) method that utilizes 3D connected domain identification to
better capture the spatial and temporal evolution of precipitation systems; (b) propose a lifecycle fitting model that
represents precipitation evolution through a parameterized curve encompassing development, maturity, and
dissipation stages, providing a generalized framework for automatically deriving precipitation dynamics; (c)
analyze the typical precipitation patterns over CONUS based on the framework with three distinct precipitation
sources. This study has the great potential on deepening the understanding of precipitation variability and lays a
foundation for climate-scale precipitation research.

2. Precipitation Data Sets
2.1. CONUS404

The four-km long-term regional hydroclimate reanalysis over the conterminous United States (CONUS404) data
set, developed collaboratively by the National Center for Atmospheric Research and the U.S. Geological Survey

ZHU ET AL.

2 of 10

85U SUOWILLIOD AIERID 8|qeal|dde au Aq peusenob aJe SajoiLe YO ‘88N JO Sa|nJ Joj ARid18ulUQO 8|1/, UO (SUOTIIPUCD-PUE-SWIS) 0D A8 |IM"Akeq 1 jpul UO//:SdNL) SUONIPUOD PUe SW.B 1 8Y) 89S *[GZ0Z/60/T0] Uo Akeiqi auljuo A8|IM ‘0F9STT 195202/620T 0T/10p/wod A3 |1m Arelq i puljuo'sqndnfe//:sdny wouy pepeojumod ‘vT ‘5202 ‘L0087Y6T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2025GL115640

(USGS), is a high-resolution (4 km) hydroclimate reanalysis product spanning over 40 years (October 1979 to
September 2021) (Rasmussen et al., 2023). CONUS404 data is publicly accessible and could be downloaded at
https://rda.ucar.edu/datasets/d559000/.

2.2. IMERG

Integrated Multi-satellitE Retrievals for GPM (IMERG) was developed based on the TRMM mission, which laid
the foundation for retrieving precipitation data from space based on multisource remote sensing data (Huffman
etal., 2015, 2020; Zhu, Li, Chen, Wen, Liu, et al., 2024). IMERG is a state-of-the-art precipitation data set widely
used in rainfall analysis, climate studies, and hydrological modeling, providing high-resolution, globally
consistent precipitation estimates (Zhu, Li, Chen, Wen, Gao, et al., 2024, Zhu, Li, Chen, Wen, Liu, et al., 2024). In
this study, the Final run of IMERG version seven is used to extract the precipitation events (Huffman et al., 2022).
The IMERG could be downloaded at https://gpm.nasa.gov/data/imerg.

2.3. ERAS

Produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), ECMWF Reanalysis 5
(ERADS) represents a state-of-the-art reanalysis data set offering high-resolution global atmospheric and oceanic
information (Hersbach et al., 2020). In this study, ERAS data, originally at 0.25-degree and hourly resolution, is
resampled to 0.1-degree resolution using bilinear interpolation to ensure consistency with the other data sets.
Additionally, ERAS data could be accessed at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5.

In this study, CONUS404, IMERG, and ERAS5 were chosen primarily because they each provide at least 20
consecutive years of continuous data spanning from 2001 to 2021 (details in Table S1 in Supporting Informa-
tion S1), because long-term data is crucial to capturing precipitation variability and studying climate impacts.
Additionally, CONUS404 provides other essential atmospheric and land surface variables beyond precipitation,
facilitating a deeper understanding of the physical mechanisms behind precipitation events. Therefore, the
combination of CONUS404, IMERG, and ERAS enables a comprehensive and consistent investigation of pre-
cipitation lifecycle characteristics over both weather and climate timescales.

3. Methodology
3.1. Three-Dimensional Morphological Extraction of Precipitation Events

We develop a novel MPEE algorithm for extracting the precipitation events at the three-dimensional scale. The
method includes four main steps:

1. Smoothing the data: A 5 X 5 X 5 (latitude, longitude and time) mean filter is applied to smooth the pre-
cipitation data by averaging values within a spatiotemporal window. This reduces local noise and prevents
small fluctuations from affecting event detection. Without smoothing, scattered noise could introduce artificial
precipitation events or break up continuous ones, leading to inaccurate identification.

2. Determining the precipitation events: Pixels with values greater than a precipitation threshold (Pthd) are
classified as precipitation pixels (marked as 1), while all other pixels are marked as 0. Without this threshold,
tiny precipitation grids may create spurious connections between separate precipitation events, leading to
overestimated event sizes.

3. Searching for seeds: Seeds for extreme precipitation events are identified by selecting grid points where the
smoothed precipitation pixels exceed the seed threshold (Sthd). These are determined using connected
component labeling and serve as the initial points for event detection and region growing. The choice of Sthd is
a key parameter in the calibration process, as it directly impacts how precipitation events are defined and
distinguished from each other.

4. Iteratively calculating for matching the whole precipitation events: The seed pixels are expanded iteratively
using a 3D morphological dilation process. A spherical structuring element is applied to dilate the core regions,
gradually incorporating neighboring pixels marked as precipitation pixels in step 2. This process continues for
a specified number of iterations (Buffer Number), ensuring that precipitation pixels connected to the growing
event are assigned to the same precipitation event.
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Figure 1. The Structure of morphological precipitation event extraction and corresponding lifecycle model. The precipitation lifecycle features include maximum
precipitation (MaxPS), mean precipitation of mature stage (MeanPMature), the timing of MaxPS (MaxPLoc), slope of increasing stage (Slopelnc), slope of decreasing
stage (SlopeDec), the time period of increasing stage (TpdInc), the time period of mature stage (TpdMature), and the time period of decreasing stage (TpdDec).

Finally, discrete precipitation events are generated with all relevant precipitation pixels mapped to those events
accordingly. Additionally, the parameter calibration details are provided (details in Figures S1 to S4 in Supporting
Information S1), with Pthd, Sthd, and Buffer Number assigned as 0.1 mm/hr, 1.5 mm/hr and 50, respectively.

3.2. The Lifecycle Model for Precipitation Event

The input data of this study include CONUS404, IMERG and ERAS, which are all clipped to the range of CONUS
(from 130° to 60°W, and from 20° to 55°N) because it contains various climate zones (Zhu, Li, Chen, Wen, Gao,
et al., 2024). Based on the extracted precipitation events, the lifecycle is calculated by averaging precipitation
values at each time step (hourly in this study). We hypothesize that the lifecycle of a common precipitation event
consists of three phases: development, maturity, and dissipation (Figure 1), which can be represented by a
trapezoidal curve (with time on the x-axis and precipitation intensity on the y-axis). The development and
dissipation phases occur before and after the mature phase, respectively, and are characterized by linear increases
and decreases in precipitation. The mature phase, represented by a horizontal line of variable length, has a y-value
equal to the maximum precipitation (MaxPS) value multiplied by the mature coefficient (K, which means the
precipitation of mature stage divided the MaxPS). This coefficient is determined through an optimization process,
where the simulated curve achieves the maximum correlation coefficient (CC) with the actual precipitation curve.
Although this simulated curve does not represent all precipitation events, it effectively characterizes typical
events with clear development, maturity, and dissipation phases. Using this model, we can describe the lifecycle
of a precipitation event and calculate its corresponding lifecycle characteristics. The relevant lifecycle charac-
teristic calculations are shown in Equations 1-3.

K = meanPMature/MaxPS (1)
Slopelnc = meanPMature/TpdInc 2)
SlopeDec = meanPMature/Declnc 3)

where meanPMature and MaxPS represent the average precipitation value in mature stage and the MaxPS value,
respectively; meanwhile Slopelnc and SlopeDec denote the slopes of development and dissipation stages,
respectively; similarly, TpdInc and DecInc are the period lengths of development and dissipation stages,
respectively; and the K is the mature ratio.
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Figure 2. Spatial distribution of evaluation metrics for the lifecycle model. Each row represents a different data set: (a—c) CONUS404, (d—f) Integrated Multi-satellitE
Retrievals for GPM, and (g—i) ECMWF Reanalysis 5. Each column represents a different evaluation metric: (a, d, g) correlation coefficient (CC), (b, e, h) root mean
squared error (RMSE, mm/h), and (c, f, i) maturity coefficient (K).

3.3. Intercomparison

Since precipitation event extraction is a complex and abstract process, it is challenging to establish standard
evaluation metrics or ground truth data (Wang et al., 2023; Wang & Tang, 2020). To assess performance, we
compare the simulated curves generated from the lifecycle model with the recorded curves from the input data sets
(CONUS404, IMERG, and ERAS), providing an indirect validation of the method. Additionally, we conduct
intercomparison by applying the same extraction method and lifecycle analysis across these three data sets and
comparing the results. If the extracted precipitation events and lifecycle characteristics show consistency across
data sets, it strengthens the reliability and robustness of MPEE. To intercompare the K-means results, we used
eight lifecycle features, including Slopelnc, MeanPMature, SlopeDec, TpdMature, K, KTpd, MaxPS, and
Duration (D), all of which were normalized before clustering, and which represent the slope of the increasing
stage, mean precipitation during the mature stage, slope of the decreasing stage, time period of the mature stage,
maturity coefficient, the ratio of mature time to the total duration, MaxPS, and overall duration, respectively.

4. Results
4.1. The Evaluation of the Lifecycle Model for Precipitation Events

As shown in Figure 2, these data sets all show high CC (~0.6) over CONUS, demonstrating that the lifecycle
model is capable of capturing the main trends of the precipitation events (case studies in Figures S5 and S6 in
Supporting Information S1). By further examining the spatial distribution of events whose fitted curves achieve
CC > 0.6 (see Figure S7 in Supporting Information S1), we find that the pattern of these high-skill events closely
mirrors that of the total event population (with a larger concentration over the southern coastal/oceanic sector),
indicating that the model does not introduce any appreciable geographic bias in representing precipitation
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Figure 3. The results of K-means including (left panel) the pie figure to show the percentages of different clusters and (right panel) the normalized values of various
lifecycle features, based on (a—b) CONUS404, (c—d) Integrated Multi-satellitE Retrievals for GPM, and (e-f) ECMWF Reanalysis 5. Here Slopelnc, MeanPMature,
SlopeDec, TpdMature, K, KTpd, maximum precipitation (MaxPS) and D represent the slope of increasing stage, mean precipitation of mature stage, slope of decreasing
stage, time period of mature stage, mature coefficient, the ratio of mature time to the total duration, MaxPS and duration, respectively.

lifecycles. Although the lifecycle model may not perform as well in the southwestern part of the study region,
where the CC is below 0.3, this could be attributed to several factors. One reason may be the relatively low
precipitation in this area, combined with the more complex and rapid evolution of precipitation events. Addi-
tionally, boundary limitations of the interested region may prevent the extraction of complete lifecycle events, as
some precipitation systems could enter from the edges of the domain. For root mean squared error (RMSE), the
results from the three data sets show similar spatial patterns across CONUS. The central and eastern regions
exhibit higher RMSE values compared to the western region, indicating greater precipitation variability in these
areas, making it more challenging to capture with a simple lifecycle pattern. For the coefficient K, CONUS404
shows relatively higher values compared to IMERG and ERAS, which may be attributed to differences in spatial
resolution and projection. This is supported by the similarity in the spatial patterns of K between IMERG and
ERAS, although K of IMERG is overall higher than that of ERAS.

4.2. The Typical Types of Curves Based on K-Means Classification

To demonstrate the applicability of our model in distinguishing different precipitation event patterns, we applied
the K-means clustering algorithm, an unsupervised classification method, to identify distinct lifecycle charac-
teristics. Based on the Elbow method, four clusters were identified as the most suitable, as the within-cluster sum
of squared errors (WCSS) shows a clear inflection point at this number, indicating minimal gain from additional
clusters. These clusters were then applied to the CONUS404, IMERG, and ERAS data sets, as shown in Figure 3.
The results indicated that all data sets exhibited similar proportions across the clusters, with Cluster 1 to Cluster 4
representing approximately 48%, 2%, 23%, and 27% of the events, respectively.

The lifecycle features of the corresponding clusters also displayed similar patterns across all data sets. Cluster 1
represents the most common type of precipitation event, with features mostly centered around the mean. Cluster 2
captures events that last significantly longer, characterized by extreme values for Duration (D) and relatively
higher MaxPS. Cluster 3 is defined by low K and high KTpd, indicating slower development and dissipation, with
an extended mature phase. Cluster 4 is characterized by steep Slopelnc and SlopeDec, along with relatively high
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Figure 4. The curve performances of different clusters from K-means in terms of (a) the curve shapes in range from O to 20 hr, (b) the curve shapes in range from O to
100 hr, and (c) the normalized curve shapes by taking x as percentage stages and taking y as the normalized precipitation (which value is divided by the precipitation at
the mature stage). Note that the columns 1 to 3 represent the CONUS404, Integrated Multi-satellitE Retrievals for GPM and ECMWF Reanalysis 5, respectively.

MaxPS, reflecting rapid development and dissipation, typical of intense convective rain events. This clustering
approach provides a clear understanding of the different types of precipitation events across these data sets.

4.3. The Typical Curves of Different Clusters Based on K-Means

Analyzing the feature distributions of these clusters alone is insufficient to fully uncover their differences.
Therefore, we averaged the curves within each cluster, using both real hours and the percentage of each lifecycle
stage on the x-axis to gain deeper insights (Figure 4). It is clear that Cluster 2 differs significantly from the other
clusters, as its lifecycle extends for more than 100 hr, with the mature stage lasting around 20-30 hr. In contrast,
the mature stage for the other clusters is only around 3-5 hr. On the hourly axis (Figures 4a and 4b), Cluster 1 and
Cluster 3 exhibit similar shapes. However, compared to Cluster 1, Cluster 3 has a longer mature stage and a lower
peak precipitation value. Cluster 4, on the other hand, shows a much higher peak precipitation value compared to
both Cluster 1 and Cluster 3. Correspondingly, the rates of change during the development and dissipation stages
in Cluster 4 are also faster. From this, we can conclude that Cluster 4 experiences the fastest lifecycle changes
among the clusters, while Cluster 2 has the slowest and longest lifecycle.
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We also averaged the ratios relative to MeanPMature as the y-axis, using the percentage of each lifecycle stage as
the x-axis. This approach, instead of relying on an hourly scale, allows us to more clearly distinguish between the
previously hard-to-differentiate Cluster 1 and Cluster 3. As shown in Figure 4c, Cluster 3 and Cluster 4 display
flatter curves, indicating that the mature stage dominates the majority of their lifecycle, occupying over 50%. In
contrast, the mature stage for Cluster 1 and Cluster 2 accounts for only about 15%-25% of the lifecycle. Another
notable characteristic of Cluster 2 is that its peak precipitation value tends to occur later in the lifecycle, around
60%—70%, whereas the other clusters reach their peak near the middle, around 50%. In Cluster 2, precipitation
develops slowly, the mature stage is prolonged, but after reaching the peak, it dissipates quickly. The MPEE and
lifecycle model robustly identify and classify precipitation events across multiple data sets, demonstrating high
consistency and reliability.

5. Discussion
5.1. Advantages and Improvements of MPEE

Traditional object-based precipitation extraction methods, such as CRA, MODE, and MTD, primarily rely on the
spatial connectivity of precipitation pixels to identify and track precipitation systems (Clark et al., 2014; Davis
et al., 2006a). These methods, though effective for large systems, often over-aggregate small- and medium-scale
events by merging adjacent grid cells based on threshold exceedance, even when connections are weak or arti-
ficial. However, the MPEE method uses a seed-based strategy with the 3D morphological dilation to identify core
precipitation regions first, ensuring only nearby pixels are aggregated, thereby reducing false merging and
improving event separation. As a result, MPEE enhances the physical realism of extracted events and improves
the model's applicability to a broader spectrum of precipitation regimes, particularly those dominated by frag-
mented or intermittent rainfall.

5.2. Discussion About the Universality of the Lifecycle Model

While the proposed lifecycle model simplifies the evolution of precipitation events into three distinct stages
(development, maturity, and dissipation), this segmentation inevitably overlooks certain complexities observed in
real-world systems. For instance, some convective or tropical systems exhibit re-intensification, where precipi-
tation intensity increases again after initial weakening. Our current model, based on a trapezoidal fit to identify the
most correlated representation of the observed curve, does not capture such nonlinear behaviors. As a result, re-
intensifying systems are either poorly fitted or excluded based on low correlation thresholds.

Furthermore, the simulated mature phase is derived by maximizing CC between the fitted and actual curves, with
the maturity coefficient (K) defined as the ratio of mature-stage precipitation to the maximum event precipitation.
This curve-fitting strategy enables objective lifecycle representation across diverse events but is not intended to
universally replicate all precipitation systems. It serves as a generalized and scalable approximation that holds for
the majority of events with clear peak structures. The inherent simplification, however, means that systems with
multiple peaks or atypical evolution may not be well represented.

5.3. Inconsistency in Spatial Distribution of Precipitation Events

Additionally, we observe in Figure 2 that the RMSE distribution closely follows the spatial pattern of precipi-
tation magnitude—lower in the West and higher in the East, particularly along coastal zones. This reflects a
common characteristic in model evaluations where RMSE tends to be positively correlated with precipitation
intensity. Therefore, we recommend using correlation-based metrics such as CC in tandem with RMSE to provide
a more normalized and scale-invariant assessment of model performance. These considerations highlight the
trade-offs between model generality and event-specific accuracy, and underscore the need for continued
development of lifecycle modeling frameworks that balance robustness and flexibility.

6. Conclusion

In this study, we propose a novel MPEE method along with a lifecycle fitting model, designed to extract pre-
cipitation events using three-dimensional morphological theory and identify an optimal lifecycle curve for each
event. To evaluate the performance of our algorithm, we calculate CC and RMSE between the extracted
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precipitation events and the simulated lifecycle curves, while also applying intercomparison using data from
CONUS404, IMERG, and ERAS. The main findings of this study can be summarized as follows:

1. Over CONUS, the CCs between the extracted precipitation events and the simulated lifecycle curves
consistently reach 0.6 or higher, while the RMSE remains below 0.7 mm/hr in most cases, demonstrating the
model's effectiveness in accurately capturing precipitation events.

2. The K-means clustering results reveal significant similarities in both the proportion of clusters and the dis-
tribution of lifecycle characteristics across the multi-source precipitation products (CONUS404, IMERG, and
ERAS), demonstrating the robustness of our method.

3. The K-means clustering identifies four characteristic types of precipitation events: common and normal
events, those with high peak values, those with long durations, and those with gentler development slopes,
where the peak occurs significantly beyond 50% of the lifecycle.

This study provides a robust and scalable framework for identifying and characterizing precipitation events across
multiple data sets using morphological theory and lifecycle modeling. It also lays a foundation for long-term
lifecycle analysis, enhancing our understanding of climate change impacts on precipitation dynamics.
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