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A B S T R A C T

The gridding process applied to satellite-retrieved cloud properties results in the loss of certain information. In
this study, we analyzed the error associated with using gridded cloud optical depth (τ) in calculating radiative
forcing from the perspective of the distribution pattern of τ. Utilizing the simulated results from SBDART (Santa
Babara DISORT Atmospheric Radiative Transfer), we calculated this error in ideal probability distribution
functions (PDFs) of τ while keeping the average τ constant, and then used the τ retrieved from MODIS (Moderate
Resolution Imaging Spectroradiometer) pixel-level observations to simulate real case studies. The results from
both the ideal experiments and real case studies indicate that there is a large dependence of the error caused by
gridding process on the PDF of τ. The greatest relative error occurs in the cases when τ fits a two-point or uniform
distribution, reaching 10–20%, while this error is below 5% when τ follows a binomial distribution. From the
analysis of MODIS pixel-level data from June 2016, we found that the PDFs of τ within one grid point (1°× 1°)
could not be simply described by a normal distribution. Although using the logarithmic mean of τ controls the
error effectively, the error can still be up to 4%. Our study suggests that using gridded data (especially the
arithmetic mean) to calculate radiative forcing may result in uncertainty to a certain extent, which depends
strongly on the distribution pattern of cloud properties within the grid point. The PDF of cloud properties should
be comprehensively considered in the gridding process in the future.

1. Introduction

Clouds cover about two-thirds of Earth, and changes in their macro
and micro characteristics affect radiative transfer in the atmosphere.
Theoretically, cloud reflects inward shortwave solar radiation, thus
cooling the Earth system, and reduces outward longwave radiation,
thus heating the Earth system (Baker, 1997). For example, the Earth
Radiation Budget Experiment (ERBE) observations show that in April
1985, the global average cloud shortwave radiative forcing
(−44.5Wm−2) was greater than its longwave radiative forcing
(31.3Wm−2), that is, during this period the net radiative forcing of
cloud was negative (cooling effect) (Ramanthan, 1989). Different
clouds have different cloud-top heights, morphologies, particle sizes,
optical depths, and precipitation probabilities (Rangno and Hobbs,
2005), so their effects on radiation are also significantly different. The
cloud optical depth (τ) is one of the cloud properties, reflecting the
attenuation of radiation intensity by the medium in the transmission
path, which directly affects the radiation budget of the ground-gas
system (Curry and Ebert, 1992; Liou, 2002). The large coverage of
cloud and its direct impact on radiation makes the study of cloud

radiative forcing (RF) an important part of climate-related research.
Owing to the large horizontal and vertical distribution of clouds, the

retrieval of cloud parameters from satellite observations has become an
important foundation for related research. Combining the radiative
transfer model and the reflectivity equation, Nakajima and King (1990)
obtained a method for retrieving τ and the effective particle radius (Re)
using the reflection function of the visible and near-infrared bands, and
further developed a three-channel algorithm (Nakajima and Nakajima,
1995). This algorithm is now applied to the retrieval of cloud properties
on Moderate Resolution Imaging Spectroradiometer (MODIS) data
(King et al., 1997), and has been widely used in the fields of cloud and
precipitation features, cloud climatic effects, and aerosol indirect effects
(Rossow and Schiffer, 1999; Rosenfeld et al., 2007; Fu, 2014).

Based on these algorithms and radiation transfer models, some re-
searchers have studied the effects of clouds with different τ on the ra-
diation budget. For example, Chen et al. (2000) simulated the annual
mean radiative effects of nine types of clouds identified by the Inter-
national Satellite Cloud Climatology Project (ISCCP), finding that
stratocumulus, altostratus, and cirrostratus cloud with moderate optical
thickness (3.6 < τ < 23) have the largest impacts on shortwave RF. Li
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et al. (2014) found that the cirrus boundary region (τ < 0.3) also af-
fects radiation, and its presence causes longwave RF of about
10Wm−2. Fu et al. (2017) further found that the influence of this cirrus
boundary on the global average longwave warming effect is approxi-
mately 0.07Wm−2, which has not yet been considered in the Inter-
governmental Panel on Climate Change assessment reports. Recently,
some studies have used models to simulate the RF of cirrus clouds,
cloud anvils, and precipitation clouds with different τ (Kienast-Sjogren
et al., 2016; Yang et al., 2017; Chen and Fu, 2018), providing some new
insights into the RF of clouds.

Owing to different orbits, scanning methods, and instrument per-
formance, the horizontal resolutions of different spaceborne instru-
ments are also different. For instance, the nadir point of the Visible and
Infrared Scanner (VIRS) on Tropical Rainfall Measuring Mission
(TRMM) has a horizontal resolution of 2 km; the resolution of the very
high resolution scanning radiometer (AVHRR) is 1.09 km; MODIS on
the Aqua/Terra satellite has three resolutions of 250m (bands 1–2),
500m (bands 3–7), and 1 km (bands 8–36) at nadir, and the size of the
pixels can change significantly with higher scan angles. However, cli-
mate research tends to use large-scale grid data, such as the global
radiative budget of the atmosphere of 10°× 10°, satellite-based global
hydrological cycle observations of 1°× 1°, and global radiative balance
based on weather analyses of 2.5°× 2.5°, which requires averaging the
pixel-level data over the grid points (de la Torre Juarez et al., 2011). At
the same time, the space–time average of pixel-level data within the
grid points can also reduce the amount of data and alleviate the cal-
culation workload.

Although there are many obvious advantages to data gridding, the
resulting deviations from the original data cannot be ignored
(Pierrehumbert, 1996). Oreopoulos et al. (2009) used MODIS 1°-
gridded τ and Re data, combined with radiative transfer models, to
calculate the computational error of RF from the plane-parallel homo-
geneous approximation. They found the global average RF difference to
be 6Wm−2 at the top of the atmosphere. de la Torre Juarez et al.
(2011) used MODIS data to analyze cloud parameters with a horizontal
scale from 5 km to 500 km and found that the global mean value of the
cloud water path changes by 7%, which is likely to affect the calcula-
tion of global radiation budget. Chen and Fu (2017) revealed that even
if the VIRS pixel (~2 km) is matched and arithmetically averaged to the
precipitation radar pixel (~5 km), it will also cause a “partial filling
effect”, that is, a warm-rain pixel determined by the coarser resolution
(~5 km) might actually contain clear-sky or cold-cloud pixel (~2 km).

The influence of cloud-parameter scale changes on RF has received
widespread attention. Some studies have suggested the best scale for
cloud-parameter studies based on theory or practical observations. For
example, Oreopoulos and Davies (1998) suggested that the retrieving
scales of optical thickness should be controlled within a few kilometers,
which can reduce the “small-scale effect” (Cahalan et al., 1994).
However, at present, there are still many relevant radiation studies that
use gridded cloud parameters as the model input, which will un-
doubtedly bring systematic errors to the final result. In addition, nu-
merous studies use the mean value to represent the cloud parameters
within the grid, which is essentially based on the assumption of a
normal distribution of cloud parameters (Roe and Baker, 2007), but this
hypothesis may not have any theoretical basis (Hannart et al., 2009).
For the same mean value in a grid, the probability distribution functions
(PDFs) of cloud parameters may not be the same, and thus the influence
on radiation will be different. In this study, the concept of gridded
cloud-parameter distribution is introduced. First, the influence of dif-
ferent τ distributions on RF under ideal conditions is simulated. Then,
using MODIS observations, the RF differences between before and after
gridding are examined.

2. Data and methodology

The sixth-edition cloud product data (MOD06L2) derived from the

Terra's MODIS measurements (accessible from https://modis.gsfc.nasa.
gov/) are used in this study. These data are the basic item of the MODIS
product, including the cloud-top parameters (pressure, temperature and
height) and cloud properties (τ, Re, etc.) (Platnick et al., 2017).
MOD06_L2 is pixel-level data. Along the orbit, MODIS generates a
photo every five minutes. The width of the scan track is about 2330 km,
and the resolution of the cloud optical parameters is 1 km×1 km. The
Terra satellite, launched jointly by the United States, Japan, and Ca-
nada on 18 December 1999, is the first satellite of the Earth Observa-
tion System (EOS) program. The satellite is in the sun-synchronous
polar orbit, with a period of 99min (16 tracks per day), and transits the
Equator at 10:30 and 22:30 (local time) every day. Because τ is de-
pendent on the observation of the visible channel, cloud parameters can
be retrieved only at 10:30 local time.

SBDART (Santa Babara DISORT Atmospheric Radiative Transfer) is
a software for calculating plane-parallel atmospheric radiation trans-
mission. It is built on FORTRAN programs, and is a collection of ad-
vanced and complex physical models including Discrete-Ordinate-
Method Radiative Transfer (DISORT) (Stamnes et al., 1988). SBDART
sets a reasonable default value for many variables. When the INPUT file
is not set, the SBDART model will use the default value for calculation
(Ricchiazzi et al., 1998).

Factors that affectthe cloud RF are not only τ, but also cloud height,
Re, surface albedo, and ambient temperature. However, these are not
the focus of this study, so the variables need to be fixed to avoid mis-
taking their effects as that of τ on the RF. Unless otherwise specified, the
variables are based on the default values provided by SBDART. To be as
consistent as possible with the real cases, in the SBDART simulation, the
atmospheric profile is selected as mid-latitude summer. In an ideal
experiment, the effective particle radius is unified to 15 μm, and the
solar zenith angles (SZA) are set to 0°, 30°, 60°, and 90°, respectively.
Please note that “SAZ = 90°” is an artificial setting in model and re-
presents the “night”, in which case the shortwave solar radiation is
turned off and only longwave radiation is considered. In the real cases,
both the Re and the SZA use the average value within the 1° grid pro-
vided by MOD06_L2.

Relative error, also called percent error, is used to put error into
perspective. Here, let the absolute error be the difference between the
inaccurate value and true value, and then the relative error is the ab-
solute error divided by the true value. For example, an error of 1Wm−2

would be a lot if the true RF is 5Wm−2 (relative error is 20%), but
insignificant if the RF is 1000Wm−2 (relative error is 20%).

3. Ideal experiment

We considered three typical patterns of distributions as possible
PDFs of τ, which are two-point distribution, binomial distribution, and
uniform distribution. We define x as τ, and x as the mean of τ, so that
these three distributions are defined as follows.

(1) Two-point distribution

There are only two possible values for x, and the probability of each
is 1/2. To be closer to the reality, we select the two points to be 0.5
times and 1.5 times the mean value, respectively, as shown in the for-
mula below.

∈ = ∈ ∩x x x x{0.5 , 1.5 2n, n [1, 50]

The two-point distribution is the ideal form of bimodal distribution.
For example, the cloud-top height usually obeys this distribution: there
are two main peaks of 2 km and 14 km over the tropical ocean (Riley
and Mapes, 2009) and a similar bimodal distribution is also found in the
flat Gangetic Plains (Chen et al., 2017).

(2) Binomial distribution
For independent experiments repeated n times with the same con-

ditions, the probability of occurrence of event A in each experiment is p.
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X indicates the number of occurrences of event A in the n experiments,
X may take 0, 1, 2, …, n, so that:

= = −
−P X i C p p( ) (1 )n

i i n i

The PDF of X is defined as the binomial distribution. Having con-
sidered the calculation step of SBDART and our experiment being
comparable to the two-point distribution, we define n (that is, the
maximum boundary of the PDF) to be twice as large as x, and p= .5
(i.e. the most ideal binomial distribution). The mathematical expression
is as follows:

∈ ∩ ∈ =x n x x[0, ] | n 2

= = ×P x x C( ) 0.5n
x n

1 1

When n is large enough, this distribution will approach a Poisson
distribution, and when the step length approaches zero, the distribution
changes from discrete to continuous, becoming a normal distribution,
which is also the most common distribution pattern in atmospheric
science. Similarly, this distribution hypothesis is also widely used in the
assumptions of random variables in systems science (Liu et al., 2017).

(3) Uniform distribution
The uniform distribution is defined as the probability of all possible

outcomes is the same. To simplify the simulation process, the step of τ is
set to 1, and the distribution range is 0 to 2 times the mean τ. That is:

∈ ∩ ∈ =x n x x[0, ] | n 2

= =

+

P x x
n

( ) 1
11

The uniform distribution is one of the simplest distributions, the
significance of which is that the probability of distribution of any in-
terval of the same length is equal.

To clearly illustrate the three distributions described in this paper,
we take x (mean τ) as an example. Fig. 1 shows the PDFs of the three
distributions, with the mean τ as 10.

According to the conditions described in the Section 2, we simulated
the surface RF corresponding to different τ when the SZA is 0°, 30°, 60°,
and 90°. The RF corresponding to different distribution patterns at this
time can also be obtained when the arithmetic mean of τ is fixed at a
constant value. For example, when the average τ is 10, the RF of the
two-point distribution is the average of the RF with a τ of 5 and another
of 15; and the RF corresponding to the binomial distribution is the
weighted average of the RFs of τ from 0 to 20 (weight coefficients are
the probability in Fig. 1b, and τ=0 means clear sky).

Assume a grid cell contains many pixels, and the cloud optical depth
of each pixel is τ1, τ2, … τN, respectively (Fig. 2). Then, we have two
methods to calculate the RF within a grid cell. One is using each pixel-
level τ to calculate the pixel-level RF, and then averaging these RFs to
get RFa (left), which should represent the accurate RF, but the calcu-
lation is complicated. Another is averaging the τ in a grid cell to get τ

first, and then calculate the RFb by using τ directly (right). This method
is widely used in most studies, but it produces errors because of the
inhomogeneous distribution of τ.

Fig. 3 shows the RF under the different distributions of τ (green line
for two-point distribution, blue line for binomial distribution, and red
line for binomial distribution), and calculated by directly using grid-
mean τ without considering the distribution pattern or weights (black
line). Please note that the RFs of green, blue and red lines are calculated
by using the left method in Fig. 2 (RFa), and the black line is from the
right method in Fig. 2 (RFb). Therefore, the three typical distribution
patterns are presupposed as the accurate values, to evaluate under
which condition would the RF calculated by gridded τ produce the
greatest error.

During the day, the surface RF of cloud is negative, that is, it has a
cooling effect. This is mainly because the cloud blocks the sunlight, so
that the shortwave radiation that passes through the cloud to the sur-
face is less than the condition without cloud. As τ increases, more and
more sunlight is reflected by the cloud, and the negative RF of the cloud
increases gradually. When τ is small, the change rate of the RF is large,
and when τ is> 30, the change rate is significantly decreased, and the
RF gradually stabilizes. As the SZA increases, the injected shortwave
radiation decreases, and the RF value also decreases. At a SZA of 0°, the
surface RF is stable at 900–1000Wm−2 (Fig. 3a), while at a SZA of 60°,
it is reduced by half and stabilized at ~400Wm−2 (Fig. 3c). At night
(i.e. SZA=90°), there is no shortwave radiation input, so the longwave
radiation from the surface dominates, thus making the cloud mainly
have a greenhouse effect. As τ increases, the cloud's blocking effect on
longwave radiation is strengthened and RF increases rapidly, which
stabilizes when τ is > 10. It can also be seen from the Fig. 3 that the
variation of the RF with τ is nonlinear regardless of day or night. Simply
calculating the arithmetic average of the τ in the grid point will in-
evitably cause a deviation in the calculation of RF.

The RF values are not comparable for different conditions, so we
calculated the relative errors instead. The error of the binomial dis-
tribution is the smallest, mainly below 5%; the error of the uniform
distribution is the greatest, which is up to 14% during the day and 20%
at night; the error of the two-point distribution is slightly smaller than
the uniform distribution, up to 10%. It indicates that using RF calcu-
lated from grid-mean τ produces the greatest error when the τ in grid
obeys uniform distribution. This phenomenon can be attributed to the
feature of the lines in Fig. 3a, that is, RF(τ) is a “convex downward”
function in a Euclidean space. More generally, the slope of the lines is
not constant but monotonically non-decreasing (its absolute value
monotonically decreasing) for τ from 2 to 100, which leads to the fact
that the distribution with more small τ values will cause greater error.
At the same time, the error function corresponding to the three dis-
tribution patterns has the same trend as τ, and the maximum error is
reached at the smallest τ value. For example, when SZA is 0°, τ is 7–8 in
the binomial distribution when the relative error becomes largest; for

Fig. 1. For an average τ of 10, the probability of τ in: (a) two-point distribution, (b) binomial distribution, and (c) uniform distribution.
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the two-point distribution and the uniform distribution, the relative
error maximum values appears when τ is ~16 and ~22, respectively.
When the maximum relative error is reached, it decreases mono-
tonically with the increase of τ and gradually approaches 0, because the
change of RF is smaller when τ becomes larger.

Correspondingly, we calculated the TOA (top of atmosphere) RF and
the relative errors in different PDFs of τ (Fig. 4). The overall trend of
TOA RF is similar to that of the surface, and it also shows a tendency to
increase rapidly first and then stabilize. The order of relative error is:
uniform distribution> two-point distribution>binomial distribution.
The relative error of TOA is slightly greater than that of the surface. For
example, when the SZA is 0°, the maximum relative error of the uniform
distribution exceeds 16%, and the maximum relative error of the two-
point distribution exceeds 12%.

4. Real cases

The nonlinear variation of RF with τ in Figs. 3 and 4 reveals that RF
calculated by grid-mean τ is certainly inaccurate, and its error is af-
fected by the distribution pattern of τ within one grid. However, the
ideal experiment is simulated using an assumed perfect distribution, but
the actual distribution of τ may not be perfectly described by these

assumptions. Therefore, it is necessary to use actual observation data to
study the error due to the gridding process. The use of MODIS cloud
products provides an excellent opportunity to study this issue. Figs. 5,
6, and 7 show the original data, the average data, and the PDF of
gridded τ for three different cases from MODIS observations. The da-
shed red line is the arithmetic mean value of the gridded τ.

Fig. 5 shows case 1 on 21 June 2016, at the junction of the moun-
tains and plains on the southwest side of the Himalayas, where the
terrain is undulating. A cloud band with a convective cell appears in the
detection range of Fig. 5a, and its overall trend is consistent with the
mountain trend, which is from northwest to southeast. This may be the
result of the strong topographical effects and the southwesterly airflow
brought by the South Asian summer monsoon (Zhang et al., 2018). The
high-value region has a large τ, limited by the MODIS observing range,
in which most of the values are 150, which may be the deep and intense
convective cell surrounded by broad stratiform cloud and cloud anvils,
introduced by Houze et al. (2007). On the northeast side of the con-
vective cell (the plateau side), there is a large area of clear sky. The
high-value center of τ is located at 28.5°N, 82°E, and is surrounded by
thinner clouds with τ<30. As this high-value center occurs at the
junction of two 1°× 1° grids, it is divided into two grids for calculation.
After the gridding process, the high-value center shown in Fig. 5b

Fig. 2. Flowchart of the relative error calculation.

Fig. 3. Surface RF (a–d), and relative errors (e–h) of the different SZAs and distributions. Black line represents the RF calculated directly using the arithmetic mean τ.
Green, blue, and red lines represent the two-point distribution, binomial distribution, and uniform distribution, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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moves north to 29.5°N, 81.5°E (i.e. the second grid in the left column),
which indicates that the cloud parameters are severely distorted by this
process when describing the weather system.

The area we focus on is located on the northeast side of this con-
vective cell, which is indicated by the black box marked in Fig. 5a. The
whole grid is located at the junction of cloudy and clear skies. A small
area of clear sky appears in the northeast corner of the grid. According
to the MODIS algorithm, these clear-sky regions with a default value of
τ were not included in the τ gridding process. The clear-sky region is
surrounded by a thin cloud with an optical thickness of around 10,
while the southwest corner has a small part of the optically high-value
region, with values mainly distributed from 30 to 60, and up to 110. As
can be seen from Fig. 5c, the PDF of τ here shows a bimodal structure.
The first peak appears at around 10 and the maximum frequency is
nearly 4%. The second peak is slightly wider but the peak is lower and
the frequency is about 2%, distributed between 30 and 45. The ar-
ithmetic mean of the gridded τ is approximately 29 (dashed line in
Fig. 5c) between the two peaks.

The example shown in Fig. 6 is from Eastern China on 2 June 2016.
Fig. 6a shows that the entire 3°× 3° region is covered by cloud with τ of
at least 10, with thick cloud surrounding the center grid, with a τ of up
to 150. τ is very unevenly distributed in pixel-level products, but after
the arithmetic averaging process (Fig. 6b), these detailed features are
hard to see. The average of τ is from 30 to 50, which is very uniform.
Our focus area 30–31°N, 113–114°E (black box in Fig. 6a) is located in
the middle of the two high-value areas, with almost no high optical
thickness values and τ of about 40. The PDF is shown in Fig. 6c, and
exhibits a unimodal distribution, which approximates the binomial
distribution described in the ideal experiment. The maximum value
appears at τ of 35, and the peak PDF value is about 6.5%. The ar-
ithmetic mean of τ is 39.35, which is very close to the peak of the
distribution.

The case shown in Fig. 7 on 16 June 2016 also occurred on the
southern slope of the Himalayas. Fig. 7a shows that there is a thick
cloud belt with a northwest–southeast trend in this area, and τ at the
center may have exceeded the MODIS retrieval range of 150. Overall,

Fig. 4. TOA RF (a–d), and relative errors (e–h) of the different SZAs and distributions. Black line represents the RF calculated directly using the arithmetic mean τ.
Green, blue, and red lines represent the two-point distribution, binomial distribution, and uniform distribution, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Case 1, MODIS observation of τ on 21 June 2016. (a) 1 km resolution, (b) arithmetic mean in the 1° grid, and (c) PDF of the τ inside the central black box.
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the thickest part of the cloud belt is mainly concentrated in the
southeast, and most of the area around the cloud belt is covered by
clouds with τ below 20, and in the entire 3°× 3° grid. There is little
clear sky, which is mainly concentrated in the 26–27°N, 80–81°E area
on the west side of the cloud band. Fig. 7b shows the τ distribution after
the gridding process. The northwest–southeast trend of τ can be roughly
seen, but the smoothed τ has dropped from 150 to 50. The grid we
selected is in the center of the band cloud, where the overall τ is thick.
At the same time, the τ distribution in this grid is shown in Fig. 7c, and
the τ from 0 to 50 is maintained at around 2%, which is approximately
evenly distributed in this interval. As τ further increases, its frequency
rapidly decreases to zero.

Although the arithmetic mean of τ is widely used for the estimation
of RF, considering its own significance, some more precise studies
usually use the logarithmic mean; for example, Clouds and the Earth's
Radiant Energy System (CERES) calculates the logarithmic average of τ
within grids (Doelling et al., 2013; Loeb et al., 2018), for related studies
of cloud RF. Fig. 8 shows the logarithmic PDF of τ of the above three
cases. Fig. 8a still shows a bimodal distribution, but due to the loga-
rithmic operation, the frequency of the right peak is significantly higher
than the peak τ of 30–60 in Fig. 5c. Fig. 8b also shows a similar single-
peak distribution to Fig. 6c, and its log-mean value is roughly coin-
cident with the peak. Fig. 8c and Fig. 7c show a large difference. After
the logarithmic calculation, τ from 0 to 50 becomes a unimodal

distribution with a logarithmic peak of about 1.5. It is worth noting that
whether it is a logarithmic PDF or an original PDF distribution, the
distribution of τ within the grid points exhibits unique characteristics,
rather than satisfying a normal distribution or a lognormal distribution.
If τ is assumed to be a normal distribution regardless of its actual dis-
tribution pattern, a calculated deviation will inevitably occur.

Based on the arithmetic mean, the logarithmic mean and the actual
pixel-level τ, we calculated their RFs respectively. For the arithmetic
mean τ and the logarithmic mean τ, it is simple for RF calculation be-
cause we only need to bring the τ value into the model once. Pixel-level
τ is obviously more accurate in describing τ in grid, but more compli-
cated for RF calculation: τ of each cloudy pixel is brought into model to
get the pixel-level RF, and then the pixel-level RFs in 1° grid are aver-
aged to get the accurate RF value. Assuming the RF calculated by the
pixel-level τ is the true value, the relative error of the RF simulated by
the arithmetic mean τ and logarithmic mean τ is shown in Table 1. For
the arithmetic mean, the relative error is greater than the RF simulated
by the logarithmic mean. The distribution pattern has a great influence
on the relative error. For example, the relative errors of case 1 and case
3 both exceed 15%, and since case 2 is approximately evenly dis-
tributed, the relative error is< 3%. Although the RF simulated by
logarithmic mean τ is closer to the true value, it still produces a relative
error of about 4% in the non-binomial cases, which is much higher than
the relative error of case 2 (TOA ~0.63%, surface ~0.5%).

Fig. 6. Case 2, MODIS observation of τ on 2 June 2016. (a) 1 km resolution, (b) arithmetic mean in the 1° grid, and (c) PDF of the τ inside the central black box.

Fig. 7. Case 3, MODIS observation of τ on 16 June 2016. (a) 1 km resolution, (b) arithmetic mean in the 1° grid, and (c) PDF of the τ inside the central black box.
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The temporal average is also a non-negligible component in the
gridding process. MODIS provides eight-day average (MOD08_E3) and
monthly average (MOD08_M3) products. For a 1° grid point, the daily
average product is usually only processed from 1 to 2 images of the day,
while the eight-day average and monthly average products contain
multiple days of observation, and the cloud parameters are more vari-
able. Fig. 9 shows the PDFs of the τ and logarithmic τ in a 1°× 1° grid
from 17 to 24 June 2016, 29–30°N, 81–82°E. Table 2 shows the relative
error of the RF corresponding to the arithmetic and logarithmic mean.
RF calculated by grid-mean τ is also considered inaccurate, and the RF
from pixel-level τ is seen as the true value. The method of calculating
relative error can be found at Section 2. The distribution of τ in Fig. 9
also could not be described by a lognormal or normal distribution, and
the mean τ also has a certain deviation from the main peak of the

distribution. When the radiation transfer is calculated, the error caused
by the arithmetic mean is> 30%, and such high uncertainty inevitably
reduces the reliability of the calculated RF. Meanwhile, the logarithmic
average is also affected by the distribution pattern, and the relative
errors of the surface and TOA are both> 2%.

5. Conclusion

In this study, SBDART is used to simulate the influence of different
PDFs of τ on RF, when the mean τ in the grid is constant. The ideal
experiments assume that the τ fits the two-point distribution, the bi-
nomial distribution, and the uniform distribution, respectively. For the
real case studies, we used MODIS pixel-level cloud products to study the
effects of space–time average on different distributions of τ, and then on
the relative error of RF. The conclusions are as follows:

1. The distribution pattern of the τ within the grid has an important
influence on RF. Even if the average τ of the grids is the same, the

Fig. 8. Logarithmic PDF distribution of τ for the three cases: (a) case 1, (b) case 2 and (c) case 3.

Table 1
Arithmetic and logarithmic mean τ and relative error for the three cases.

Case τ τ log Relative error of RF(%)

TOA Surface

Mean Log-mean Mean Log-mean

1 29.23 22.39 16.7 4.1 14.2 3.3
2 39.35 37.15 2.4 0.63 2.1 0.5
3 34.07 24.55 17.2 4.2 15.2 3.5

Fig. 9. (a) PDF distribution and (b) logarithmic PDF distribution of τ in the grid at 81–82°N, 29–30°N, 17–24 June 2016. The black dashed line is the arithmetic mean
and logarithmic mean of τ.

Table 2
Relative errors of RF caused by time–space average at TOA and surface.

TOA (%) Surface (%)

Arithmetic 38.13 32.07
Logarithmic 2.8 2.3
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unevenness of the internal τ causes a difference in RF. When τ in the
grid fits the two-point distribution or uniform distribution, the re-
lative error of the RF calculated by the arithmetic mean can reach
10–20%; for the binomial distribution, the error is small, < 5%. This
shows that direct use of grid-mean τ will result in a large uncertainty
in the calculation of RF, and it is necessary to focus on the dis-
tribution pattern within the grid.

2. The real case studies show that the distribution of τ within the grid is
highly variable and has its own characteristics. After the gridding
process, the pixel-level detailed features are smoothed. The RF cal-
culated using the logarithmic mean τ within the grid is closer to the
true value than the arithmetic mean, but there are still errors that
cannot be ignored. Therefore, we hope that future grid products can
fully consider the distribution pattern of pixels within the grid and
establish some more representative statistics.

3. The eight-day average τ within the grid also did not show a normal
distribution or a lognormal distribution. The introduction of time
averaging makes the τ distribution more complicated. The relative
error of RF using the arithmetic mean simulation exceeds 30%, and
that using the logarithmic average is> 2%. Such large RF un-
certainty caused by the distribution pattern needs sufficient atten-
tion.

There are also some limitations to this study. To avoid other errors,
we controlled other parameters such as Re, and temperature and hu-
midity profiles as default, but these parameters also have regional dif-
ferences in the grids, and they may also obey different distribution
patterns, which will affect the calculation of RF. Future research may be
able to couple these variables together to obtain a two-dimensional PDF
or even a higher-dimensional distribution.
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