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Abstract

This study validated Aeolus wind observations over China from October 2020 to September 2022
using the Integrated Global Radiosonde Archive (IGRA). The results showed that most of the Aeolus
observations were in good agreement with the IGRA observations. The quality of Aeolus Rayleigh-
clear winds is superior to that of Mie-cloudy winds, and the wind products for ascending orbits are
superior to those for descending orbits. The biases between Rayleigh-clear (Mie-cloudy) and IGRA
winds are 0.61 (0.87), —0.01 (0.81),and 1.12 (1.59) m s~ " for the total, ascending and descending
Aeolus orbits, respectively. Further classification study based on cloud height and relative humidity
reveals that the quality of Mie-cloudy winds improves with cloud altitude until stratosphere, and
Rayleigh-clear winds deteriorate for high relative humidity. The results provide a basis for quality
control and error correction of Aeolus wind observations.

1. Introduction

Thelack of direct measurements of wind profiles remains a major gap in the global observation system [1-3]. To
overcome this deficiency, the European Space Agency (ESA) launched the Aeolus satellite mission in 2018,
which carried the Atmospheric Laser Doppler Instrument (ALADIN) and became the first satellite mission to
directly observe global wind profiles from space [4, 5]. The main objective of Aeolus is to use its profiles for data
assimilation in numerical weather prediction NWP) models, to improve the weather forecasts and advance the
understanding of atmospheric dynamics [6, 7]. The benefits of assimilation of Aeolus wind profiles for NWP
have been demonstrated, especially in the upper troposphere, lower stratosphere and tropical regions [8—10].
Therefore, it is imperative to characterize Aeolus data errors under various conditions to guide targeted quality
control and calibration for optimization of NWP [7].

Aeolus wind products have been validated and compared with various reference data worldwide, including
Chinale.g., 11, 12, 13, 14]. The first validation of Aeolus wind products over China was conducted by Guo et al
[11], who used ground-based radar wind profiler (RWP) observations to compare with the Level-2B (L2B)
products. The R values (i.e., correlation coefficient) were 0.81 (0.94) between Rayleigh-clear (Mie-cloudy) and
RWP winds. Wu et al [12] used ground-based coherent Doppler wind lidar to evaluate the Aeolus winds in the
boundary layer and lower troposphere. They found that R value and bias (i.e., mean deviation) of Mie-cloudy
winds were 0.83 and —0.25 m s~ !, while those of Rayleigh-clear winds were 0.62 and —1.15 m s~ !. However,
due to the limited observation range of ground-based data, the validation work was only done for altitudes
below 10 km.

Only a few aircraft and radiosondes have direct measurements in the lower stratosphere, while aircraft
measurements are lacking in China [3]. Therefore, radiosondes are frequently used as reference data in Aeolus
validation work [e.g., 3, 15, 16, 17, 18]. Using shipborne radiosonde data, Baars et al [3] evaluated the Aeolus
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wind products from 0 to 30 km over the Atlantic. They found that the Rayleigh-clear (Mie-cloudy) winds had
systematic and random errors of 1.5 (1.0) m s~ ' and 4.84 (1.58) ms ™, respectively. Martin et al [ 13] compared
radiosonde measurements and NWP forecast equivalents from two global models with Rayleigh-clear and Mie-
cloudy winds from Aeolus. Biases were 1.4-2 m s~ ' (Rayleigh) and 1.3-1.6 m s~ ' (Mie) during ascending orbits,
1.6-2.3 ms™ ' (Rayleigh) and 1.3-1.9 m s (Mie) during descending orbits. Radiosondes have a wide and even
distribution in China, and can directly measure pressure, temperature and relative humidity (RH) [19], which
makes it convenient to do further classification studies for Aeolus verification work. Thus, the Integrated Global
Radiosonde Archive (IGRA) is a suitable choice for reference data in China.

Most previous validation works only classified Aeolus L2B products according to geometric factors such as
orbit, location, and time [11, 12, 16]. The impact of atmospheric physical conditions on the quality of Aeolus
wind profiles remains unclear. We consider the different wind measurement principles of Mie-cloudy and
Rayleigh-clear winds from Aeolus, and conduct classification studies on Aeolus wind products in two aspects
[5,20,21]. On the one hand, Mie-cloudy winds are acquired from Mie backscatter signals induced by clouds,
hence their quality varies depending on the cloud types. On the other hand, the retrieval algorithms of Rayleigh-
clear winds imply that their quality is affected by the water vapor content in the air. In this paper, the quality of
Aeolus L2B products over China is validated by comparing them with two years of IGRA wind observations
(October 2020 to September 2022). We conduct a classification study on Mie-cloudy and Rayleigh-clear winds
based on cloud types and RH respectively, in order to comprehensively analyze the quality of L2B products
under various conditions. This paper aims to provide guidance for the application of Aeolus data, and offer
insights for the planning of future similar satellite missions.

2.Data and methods

2.1. Aeolus wind observations

Aeolus flies in a sun-synchronous orbit with a height of approximately 320 km, and the orbit repeats its ground
track every 7 days [4, 5, 22]. Aeolus is equipped with a 355-nm direct-detection wind lidar ALADIN, and uses the
Doppler shift principle to obtain wind profiles of the horizontal line-of-sight (HLOS) component from the
surface to 30 km altitude. The receiver has 24 vertical range bins with a vertical resolution 0f 0.25 to 2 km and a
wind accuracy of 2to4 m s~ ', depending on altitude [6]. The HLOS wind speed is perpendicular to its orbit,
with positive values for westerly winds on ascending orbits and negative values on descending orbits. ALADIN
uses a dual-channel design, which can simultaneously obtain the particulate and molecular backscatter from
Rayleigh and Mie channels. The L2B products provide Rayleigh-clear winds and Mie-cloudy winds. The former
represent the winds observed in clear air (i.e., without aerosols and water/ice clouds), while the latter is the
winds derived from the backscatter of aerosols or cloud particles [5].

The Aeolus dataset was released on May 12, 2020, and the L2B products have been entirely publicly
accessible ever since. This study evaluates the Aeolus L2B products quality over China from October 2020 to
September 2022 (baselines ranging from 2B11 to 2B14). This dataset was compared with temporally and
spatially matched observations from IGRA. The auxiliary data, such as validity flag, estimated error, satellite
azimuth angle, vertical center of gravity altitude, and top and bottom altitudes of the vertical bin, is also provided
in the Aeolus L2B products. According to the official documents and previous studies, data quality is controlled
by validity flags (0 for invalid, 1 for valid) and estimated errors. Following previous studies, only Rayleigh-clear
and Mie-cloudy winds with a validity flag of 1 and estimated errors less than 8 m s~ and 4 m s, respectively,
are selected [12, 16, 13].

2.2.IGRA wind observations

This study collected 00:00 and 12:00 UTC daily radiosonde observations over 237 stations in China from IGRA,
comprising wind direction and speed, geopotential height, pressure, temperature, dewpoint temperature, RH,
etc. All data underwent rigorous quality control [19]. Radiosonde measurements provide a reliable reference
that other measurements can be verified against [23]. Sometimes, there are missing values in IGRA observations,
and we used Gilbert’s hypsometric formula and Lawrence’s empirical RH formula to fill the missing
geopotential height and RH values. The input data are pressure, temperature and dewpoint temperature from
the same observation [24, 25].

2.3. Data matching procedures

Firstly, in order to compare IGRA and Aeolus wind observations, IGRA and Aeolus components need to be
matched in time and space. Considering the fact that the rising speed of the radiosonde balloon is

~400 m min ", the time for the balloon to rise to 30 km is 75 min. If the average horizontal wind speed in the air
isassumed to be 20 m s, the horizontal displacement of the sounding balloon is 90 km. It is considered that the

2



10P Publishing

Environ. Res. Commun. 6 (2024) 051004 W Letters

. (b)

30°N

250 IS
104°E 106°E 108°E 110°E 112°E 114°E

{c) o
20 I

I I

w
-]

151 1 I I" i
[0 1 ‘ \
10: I | mr._‘”%ﬁ j\
51 ! L ! 5J L4 LB |'H|L.' -3
) Fﬂ‘. I | ' :

Altitude (km)
Altitude (km)
-

o

?S"N 30°N 32°N 34°N 36°N 38°N gﬂ‘N 40°N  42°N  44°N  46°N  48°N

Figure 1. Station and orbit maps for case [ and II (a), (b) and HLOS);. distribution along latitude (c), (d). In a, ablue X is Aeolus orbit,
ayellow x is matched station location, a red circle is IGRA station (Ankang). In b, same symbols for Erenhot station. In cand d, an
arrow shows the wind profile matching IGRA. Aeolus measurement time for case I was 22:50 on Oct 7, 2020 (case II was 22:40 on May
18,2022), while IGRA time was 0:00 the next day (Oct 8, 2020 and May 18, 2022).

wind speed does not change much within this range during the balloon-rising stage. Thus, this paper matches
the Aeolus wind profiles with the IGRA wind profiles, requiring that the distance between Aeolus profile and
IGRA station is not more than 100 km, and the matching time threshold is £ 1.5 h. The Aeolus observation that
is closest to each IGRA observation in space is selected for comparison.

Moreover, After the spatiotemporal matching, altitude need to be matched. Vertically, each Aeolus profile
acquires up to 24 range bins, with each range bin referred to as a sample. Similarly, each IGRA observation at
every height is referred to as a sample. The L2B products provide top, center and bottom altitudes of the vertical
bin. So, we require that the IGRA altitude fall within the top and bottom altitudes of the Aeolus range bin, and
select the IGRA measurement with an altitude closest to the bin center altitude.

Finally, the IGRA samples that passed quality control and had non-missing wind direction and speed values
need to be projected onto the HLOS wind direction [26]:

I. By using the detection principle and geometric relationship of radiosonde, the wind speed (w;) and wind
u=w X cos(270° — wy)

direction (w;) measured by IGRA are converted to uand v wind components: ) o
v =w X sin(270° — wuy)

II. Then project the u, vwind components onto the HLOS direction:

HLOS|Gra = —using — v cos ¢

Where ¢ represents the azimuth angle of Aeolus. HLOS;Gra represents the value of the IGRA wind
components projected onto the HLOS direction, while HLOSg,y1eigh and HLOSy;. represent the Rayleigh-clear
and Mie-cloudy winds respectively.

Thus, Rayleigh-clear (Mie-cloudy) acquired 8614 (1617) samples that matched with IGRA. To mitigate
observational errors from IGRA and systematic errors from Aeolus, we have excluded samples with wind speeds
exceeding +- 50 m s~ . The resultant collocation dataset includes 8122 (Rayleigh-clear) and 1579 (Mie-cloudy)
samples.

Figure 1 illustrates two case studies (case I, case II) comparing Mie-cloudy winds and IGRA winds, with
overlaid terrain data from the National Oceanic and Atmospheric Administration INOAA). Both cases
correspond to the descending orbits. In Case I (figures 1(a), (c)), there are two Aeolus bins matching with
radiosonde. At 8713 m above sea level, the HLOSygie (—25 m s~ ') matches the HLOS;gra (—21 m's™ ) showinga
tiny westerly wind difference; but at 15269 m, the 69 m s~ "HLOSy;eis 69 m s~ ' while the HLOS;cra is
—36ms ', with a wind difference of 105 m s~ '. Despite consistent westerly HLOS Gra aligning with actual
observations, HLOSy;. presents an anomalously strong easterly wind. Case I demonstrates that the poor
HLOSys;e quality at high altitudes. Case II (figures 1(b), (d)) shows decreases in wind differences (—14.9, 9,

—0.1 m s~ ") across three matched bins (2352, 4620, 5376 m) between HLOS\;. and HLOSGra. Preliminarily,
Mie-cloudy wind quality improves with cloud altitude till stratosphere.
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Figure 2. Two-dimensional histograms of IGRA HLOS winds versus Rayleigh-clear (a)—(c) and Mie-cloudy HLOS winds (d)—(f), with
the total orbits (a), (d), ascending orbits (b), () and descending orbits (c), (f). The color shading represents frequency, with bin sizes
dx=dy=2 m s~ '. The dashedline is the 1:1 line indicating y = x.

3. Results and discussion

As presented in figure 2, Rayleigh-clear (Mie-cloudy) acquired 3631 (695) and 4491 (884) samples matching
with IGRA for the ascending and descending orbits. For Rayleigh-clear winds (figures 2(a)—(c)), the biases are
0.54,0.19and 0.82 m s~ ! for the total, ascending and descending orbits, respectively. High correlation (0.89,
0.79,0.82) at p < 0.01 level and ~1 fitting slope indicate close Rayleigh-clear and IGRA wind agreements in
China. Although also show relatively reliable quality, Mie-cloudy winds (figures 2(d)—(f)) exhibit a slightly lower
quality versus Rayleigh-clear in terms of fitting slope, R and bias.

This conclusion conflicts the earlier research deeming that Mie-cloudy winds are more reliable [3, 11, 12].
This is because the Aeolus laser has aged, leading to a continuous decline in energy and weaker return signal. Asa
result, the random error has increased. Despite ESA promptly resetting N /P values since 2021 to improve
Rayleigh-clear data quality by 15%, the error caused to Mie-cloudy winds remains non-negligible [27, 28].
Compared to Guo et al[12] yielding 2020 April-July RWP wind correlations of 0.81 (Rayleigh-clear) and 0.94
(Mie-cloudy), this study showcases quality rise in the former but decline in the latter.

Westerly winds dominate over China. As a result, wind speeds tend to be positive in ascending orbits and
negative in descending orbits. For both Rayleigh-clear and Mie-cloudy winds, the R values are comparable
between orbits, but bias favours ascending. Thus, the Aeolus wind quality is superior for ascending orbits,
aligning with prior studies [11, 15]. Magnitude of bias between orbits is similar to a previous study [13].

Since Mie-cloudy winds are derived from Mie backscatter signals induced by clouds, their quality depends
on the cloud types [20, 29, 30]. Based on meteorological definitions, Mie-cloudy winds detected in clouds below
2.5 km are classified as low cloud winds, those between 2.5 and 6 km as middle cloud winds, those between 6 and
14 km as high cloud winds, and above 14 km as stratospheric cloud winds [31]. Thus, wind samples are classified
into four types for the scatterplots of HLOSyy;. versus HLOS;gra (figure 3): low clouds (264 samples), middle
clouds (483), high clouds (778), and stratospheric clouds (54). Respective linear fit slopes (R values) are 0.77
(0.48),0.88 (0.78),0.92 (0.95), and 0.36 (0.33), with R values being significant at p < 0.01 level except those of
stratospheric clouds. The biases of each type are 0.77, 1.16, 0.56,and 5.89 m s~ '. Apart from the lower bias in low
clouds due to weaker winds, the quality of Mie-cloudy winds improves with cloud altitude from low to high
clouds but is poor for stratospheric clouds.

On the one hand, the quality of tropospheric Mie-cloudy winds improved with cloud altitude. This matches
other validation studies [17]. This is likely because lower clouds contain more water vapor, aerosols, and
hydrometeors such as precipitation which reduce the signal-to-noise ratio of the Mie channel [32, 33]. These
substances strongly scatter and reflect UV light, heavily attenuating Mie-cloudy wind signals in lower clouds. In
contrast, their concentrations are lower in middle and high clouds, resulting in less interference and thus better
quality with altitude [32]. Alternatively, some studies attribute the poor quality of low cloud winds to additional
path attenuation, as the laser beam has to travel farther to reach the lower clouds and return to the
receiver [5, 21].

On the other hand, winds in stratospheric clouds (above 14 km) have poor quality due to their unique
properties. They comprise the strongly developed cumulonimbus tops and spreading cirrus clouds [31]. The
inhomogeneous, multi-layered cirrus clouds reduce the signal quality through non-uniform filling effects
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Figure 4. Two-dimensional histograms comparing HLOSgay1eigh and HLOSra winds at different relative humidity (RH) levels. The
color shading represents frequency, with bin sizes of dx = dy =2 m s~ '. The dashed line is the 1:1 line indicating y = x.

[30, 33]. Additionally, complex winds with entrainment occur near cuamulonimbus tops. These winds degrade
signals through Doppler shifts, which are also observed by CALIPSO [21, 29, 30].

To analyse further, we exclude samples with missing RH data from IGRA. Then we classify Rayleigh-clear
winds into four RH levels, with 2199, 1422, 1255, and 922 samples each (figure 4). The R (bias) values decrease
(increase) with increasing RH: 0.94 (0.56 m s 1),0.86(0.63ms "),0.81(0.89 ms "),and 0.67 (1.04 ms ), all
Rvalues significant at p < 0.01 level. This means that the quality of Rayleigh-clear winds deteriorated at high RH.

This is probably because Rayleigh-clear winds are calculated based on Doppler shifts under a dry air
assumption, excluding water vapor and aerosols. Water vapor in the air substantially absorbs and scatters UV
radiation, altering Doppler shifts at high RH. This impacts wind retrieval by deviating from the dry air
conditions assumed [5, 21, 34].

Besides, higher altitudes usually exhibit lower RH levels, thus the influence of altitude should be excluded
when discussing the impact of RH on wind quality. The altitude peak count of samples decreases with increasing




10P Publishing

Environ. Res. Commun. 6 (2024) 051004 W Letters

RH levels (as shown in figure S1). We have selected samples within the 4—6 km altitude range to compare
HLOSRaylcigh With HLOS g winds (as depicted in figure S2). After eliminating the impact of altitude, the
findings still support the previous conclusion.

4, Conclusions

Aeolus provides the first global profile observations. Validation of Aeolus wind products is necessary. This study
collected Aeolus L2B products from October 2020 to September 2022, and verified them with spatially and
temporally matched wind observations from IGRA. The need for evaluating the quality of Aeolus products in the
stratosphere, as argued by Bley et al [ 18] and Chen et al [ 14], is reflected in this study.

Statistical analyses of linear fit slopes, R values, and biases indicate that the Aeolus L2B products and IGRA
observations agree well overall. Rayleigh-clear winds outperform Mie-cloudy winds, which can be attributed to
data correction after 2021. Both wind products exhibit superior quality in ascending over descending orbits.
Classification studies by cloud types and RH reveal that Mie-cloudy winds quality betters with cloud altitude till
stratosphere, while Rayleigh-clear worsens at high RH [20, 21, 30].

Leveraging the unique measurement principles of Aeolus and IGRA’s capability for direct RH observations,
this study innovatively classified Mie-cloudy and Rayleigh-clear winds to analyse the quality of Aeolus wind
products under various conditions. The insights on the impacts of cloud types and RH on wind lidar quality
provide a basis for Aeolus data quality control and error correction, and inform future spaceborne wind lidar
developments. Due to the spatiotemporal resolution limitations of the radiosondes and Aeolus, the matching
thresholds used herein were constrained. Therefore, future verification with higher resolution observations is
needed to validate the conclusions.
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