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Abstract. Our knowledge of the properties of precipitation and clouds over their life cycles has progressed
with the rapid development of satellite observations. However, previous studies have focused on the life cycle
evolution of the macroscale features of precipitation and clouds, whereas the evolution of the microphysical
properties of precipitation and clouds over their life cycles is yet to be determined. One of the reasons for this
lack of knowledge is the fact that there is no single dataset providing both the three-dimensional structure of
precipitation and the relevant life cycle properties. We identified initial rain clusters (RCs) from the Global Pre-
cipitation Measurement (GPM) 2ADPR dataset and mesoscale convective systems (MCSs) from the Himawari-8
Advanced Himawari Image (AHI) gridded product. Based on the contours of the initial RCs and MCSs, we then
carried out a series of resilient processes, including filtration, segmentation, and consolidation, to obtain the
final RCs. The final RCs had a one-to-one correspondence with the relevant MCS. We extracted the RC area,
central location, average radar reflectivity profile, average droplet size distribution profile, and other precipita-
tion information from the contours of the final RCs and GPM 2ADPR dataset. The life cycle evolution of the
MCS area, location, and cloud-top brightness temperature were retrieved from the corresponding MCSs and
their tracks from Himawari-8 observations. The final dataset provides both three-dimensional precipitation in-
formation and life cycle information of precipitating clouds during April to June 2016-2020 over eastern Asia.
This dataset facilitates studies of the life cycle evolution of precipitation and provides a good foundation for
convection parameterizations in precipitation simulations. The dataset used in this paper is freely available at
https://doi.org/10.5281/zenodo.6198716 (Zhang et al., 2022).

temperature, water vapor content, aerosols, and atmospheric

The life cycle of clouds has a vital role in the atmospheric
water cycle. The water resources of the Earth are con-
stantly replenished, and a dynamic water balance is achieved
through the formation, movement, precipitation, and dissi-
pation processes of clouds (Oki and Kanae, 2006; Li et al.,
2020). The scale and density of cloud particles are constantly
changing during the life cycle of clouds as a result of the
influence of environmental factors, such as the atmospheric

Published by Copernicus Publications.

movements (Rosenfeld et al., 2008; Y. Chen et al., 2020a).
If the scale and density of cloud particles increase to a cer-
tain level, then the cloud particles are likely to collide fre-
quently with each other in random motion, forming larger
precipitation droplets (Freud and Rosenfeld, 2012; Houze,
2014). Precipitation droplets fall to the ground through com-
plex microphysical processes such as deposition growth, rim-
ing growth, rime splintering, aggregation growth, melting,
and evaporation (Morrison and Milbrandt, 2015; Aggarwal et
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al., 2016). The accompanying release or absorption of latent
heat is important for regulating regional and global energy
budgets (Montagnani et al., 2011; Min et al., 2013; Nelson
and L’Ecuyer, 2018). Parameterization schemes for precipi-
tation and its life cycle evolution are still difficult questions in
cloud models (Chawla et al., 2018; Freitas et al., 2018; Gen-
tine et al., 2018). Revealing the relationships between three-
dimensional precipitation microphysics and cloud life cycle
evolution will improve our physical cognition of clouds and
precipitation and provide a factual basis for the parameteri-
zation of precipitation.

The rapid development of satellite remote sensing in the
21st century has brought new opportunities for studies of the
life cycle evolution of clouds and precipitation. Spaceborne
active radar systems, such as the Tropical Rainfall Measuring
Mission (TRMM) Precipitation Radar (PR) and the Global
Precipitation Measurement (GPM) Dual-frequency Precipi-
tation Radar (DPR) provide stereo observations of precipita-
tion structure and microphysics (Miura et al., 2012; Iguchi
et al., 2012). The high spatiotemporal resolution of visible
and infrared observations from the new generation of geosta-
tionary satellites, such as the Himawari-8 and FY-4A satel-
lites, provides a robust guarantee for identifying and tracking
mesoscale convective systems (MCSs) or clouds (Vant-Hull
et al., 2016; Min et al., 2017; Yang et al., 2017; Wall et al.,
2018; Zhuge and Zou, 2018; Wang et al., 2019; Y. Chen et
al., 2020a; Zhang et al., 2021). The coordinated application
of observations from geostationary satellites and spaceborne
active radar systems provides the conditions necessary to re-
veal the life cycle evolution of clouds and precipitation.

Based on coordinated applications, scientists have carried
out many studies on the life cycle evolution of precipitating
clouds. Fiolleau and Roca (2013b) combined TRMM PR and
geostationary satellite data and showed that the precipitation
intensity was strongest at about one-third of the cloud life cy-
cle, whereas the proportion of convective pixels gradually de-
creased with the development of the clouds. Based on geosta-
tionary satellite observations and precipitation data from the
Climate Prediction Center morphing technique (CMORPH),
Ai et al. (2016) found that the lowest cloud-top temperature
does not correspond to the heaviest precipitation during the
life cycle of an MCS. The MCS tends to produce the heavi-
est precipitation first and then the minimum brightness tem-
perature. By combining geostationary satellite observations
and ground-based radar data, D. Chen et al. (2020) showed
that the development and dissipation stage of MCSs is sig-
nificantly longer than the mature stage and that the propor-
tion of anvils in the cloud gradually increases during the
life cycle, whereas the proportion of convex cores gradu-
ally decreases. Using Integrated Multi-satellitE Retrievals for
GPM (IMERG) and geostationary satellite observations, Li
et al. (2021) revealed the semi-diurnal cycle of deep convec-
tive systems over eastern China.

These studies have improved our understanding of the
life cycle evolution of macroscale features of precipitating
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clouds. However, there is still a lack of statistical studies
of the life cycle evolution of precipitation microphysics pro-
cesses. Our previous study combined the droplet size distri-
bution (DSD) from the GPM DPR and from the Himawari-
8 geostationary satellite dataset for April-August 2016 and
constructed a microphysical conceptual model of precipitat-
ing clouds at different life stages over eastern China (Zhang
and Fu, 2018). Kumar et al. (2020) showed the vertical struc-
ture of the precipitating system at different cloud life stages
in the mountains of the Andes. Research is limited by the
large amount of satellite data and complex processing algo-
rithms.

To facilitate precipitation studies, scientists have devel-
oped multiple datasets based on the orbital precipitation
product TRMM PR 2A25 and the subsequent GPM 2ADPR.
Liu et al. (2008) constructed an event-based precipitating
system dataset by grouping the contiguous precipitating area
detected by the TRMM PR; the dataset was later extended to
the GPM 2ADPR (Liu and Zipser, 2015). This dataset has
received widespread attention (Houze et al., 2015; Aggar-
wal et al., 2016; Nishant et al., 2019; Schumacher and Ras-
mussen, 2020) because it can effectively reduce the complex-
ity of event-based precipitation research. More efforts have
been made to merge datasets from different instruments on
board the TRMM, including PR 2A25, the Visible Infrared
Radiometer Scanner (VIRS) 1B01, the TRMM Microwave
Image (TMI) 1B11 and environmental information (Wilheit
et al., 2009; Fu et al., 2013; Chen and Fu, 2017; Sun and Fu,
2021).

However, there is still no single spaceborne dataset that
can provide both event-based precipitation information and
its corresponding life cycle evolution. The initial rain clus-
ters (RCs) identified from precipitation radar and the MCSs
from geostationary observations do not have a one-to-one
correspondence, so we need to carry out a series of resilient
reprocessing algorithms to aggregate redundant information
(Yang, 2019). Based on observations from Himawari-8 and
GPM DPR, the derived dataset covers eastern Asia from
April to June 2016-2020. In the future work, the spatiotem-
poral coverage of the dataset will be further expanded to the
full disk of Himawari-8 for all months from 2016.

The paper consists of four parts. Section 2 describes the
basic information in the dataset. Section 3 demonstrates the
processing algorithms, including the resilient reprocessing
algorithms (Sect. 3.1 and 3.2) and the MCS tracking algo-
rithm (Sect. 3.3). Section 4 summarizes our dataset.

2 Data and methods

2.1 GPM 2ADPR dataset

The GPM core observatory carrying the DPR and the GPM
Microwave Imager was launched on 28 February 2014. The
GPM DPR is the first spaceborne dual-frequency precipita-
tion radar and covers the globe from 65°S to 65°N. The
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Figure 1. Horizontal coverage of our dataset overlapped with av-
erage 500 hPa winds, derived from ERAS for April to June 2016—
2020. The black rectangle represents the coverage of the RC centers.

GPM DPR consists of a Ku-band (13.6 GHz) and a Ka-band
(35.5 GHz) precipitation radar and operates on three differ-
ent scan modes, including the Ku-band Normal Scan (NS),
the Ka-band Matched Scan (MS) and the Ka-band High-
sensitivity Scan (HS). The HS mode (24 beams) was changed
on 21 May 2018 to match the outer swath of the NS mode,
whereas the MS mode (25 beams) is matched with the in-
ner swath of the NS mode (Iguchi et al., 2010). The differ-
ence between the matched beams is now about 30 m at nadir,
whereas it was 300 m before 21 May 2018. The relevant min-
imum detectable reflectivity values for the NS, MS, and HS
modes are 14.5, 16.7, and 10.2dBZ, respectively (Hamada
and Takayabu, 2016). Based on the three scan modes, the
official GPM orbital dataset provides three single-frequency
products and a dual-frequency product (2ADPR). We used
the 2ADPR product, which provides the rain type, storm-top
height, corrected reflectivity profile, DSD profile, rain rate
profile, and other information at a horizontal resolution of
5km and a vertical interval of 125 m.

2.2 Himawari-8 gridded product

The Himawari-8 satellite, equipped with the Advanced Hi-
mawari Image (AHI), was launched in 2016. The AHI op-
erates at 16 visible and infrared wave bands from 0.46 to
13.3 um. The spatial resolution of the Himawari-8 full-disk
data varies with the wave band and includes 0.5, 1 and 2 km
(Bessho et al., 2016). By performing a preliminary investi-
gation of the infrared channel measurements from the AHI,
Da (2015) showed that the sums of the observational and
model error variance are about 1.5 K for the 6.2—7.3 um chan-
nels and about 1K for other infrared channels. We used the
Himawari-8 full-disk product on 0.05° x 0.05° grids (http:
/Iftp.ptree.jaxa.jp, last access: 22 February 2022) for consis-
tency with the data resolution of the GPM 2ADPR. We used
the 10.4 um brightness temperature at a temporal interval of
1h.
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Figure 2. Processing flowchart for our dataset.

2.3 Basic information in the resilient dataset

The derived resilient dataset of RCs with life cycle evolution
covers eastern Asia from April to June 2016-2020 (Fig. 1).
The center of the initial RC derived from the 2ADPR prod-
uct is restricted to the spatial range 90—150° E, 10-50° N. We
tracked the corresponding MCS over a wider spatial range
(80-170° E, 0-60° N) because the RCs are in the region of
subpolar westerlies with strong high-level westerly winds
(Fig. 1). The wind field was derived from ERAS, the latest re-
analysis data provided by the European Centre for Medium-
Range Weather Forecasts (Hersbach et al., 2020).

Figure 2 shows the processing flowchart for the resilient
dataset. Following the RC identification method in Fu et
al. (2020), we identified continuous precipitation pixels (>
0mmh~") in the GPM 2ADPR orbital data as initial RC. All
the initial RCs were temporarily retained, regardless of the
area of the RC and whether the RC was affected by truncation
of the DPR swath. This RC identification method has been
widely used in event-based precipitation and cloud research
(Feral et al., 2000; Nesbitt et al., 2006; Chen et al., 2017;
Zhang et al., 2018). Using a similar method and a bright-
ness temperature threshold of < 235 K (following Mapes and
Houze, 1993), we also identified MCSs from the Himawari-8
AHI 10.4 um brightness temperature data.

The contours of the initial RCs were very different from
those of the MCSs as a result of the randomness of pre-
cipitation, the mismatch between cold cloud top and near-
surface precipitation, the temporal difference between the
two datasets, the truncation of the DPR swath, and many
other factors. We therefore applied a series of resilient repro-
cessing algorithms to give a better correspondence between
the RCs and the MCSs.

Earth Syst. Sci. Data, 14, 1433-1445, 2022
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Figure 3. Horizontal distributions of the (a) near-surface rain rate, (b) 10.4 um brightness temperature, (c) initial RCs, and (d) identified
MCSs for the precipitation event occurring at 10:08 UTC on 1 June 2016. The adjacent dots of different colors in panels (c¢) and (d) indicate

different RCs or MCSs.

We compared the remapped contours of the initial RCs and
the contours of MCSs to determine the mapping relationships
between them. Specifically, we remapped the DPR pixels of
initial RCs to 0.05° x 0.05° grids (consistent with the MCSs)
and determined the overlapping grids between the initial RCs
and the MCSs at the nearest time (£30 min). If there was
no overlapping grid between one initial RC and any MCS,
then the initial RC was matched to the nearest MCS within
100 km from the nearest pixel of the RC contour. If there was
no MCS within 100 km of the initial RC, then the initial RC
was filtered out. These filtered RCs contain isolated warm
rain over the ocean, with a low rain top and usually weak
near-surface precipitation (Lau and Wu, 2011; Chen and Fu,
2017).

After filtration, the remaining RC corresponded to at least
one MCS. We carried out other resilient processes, including
segmentation and consolidation, on individual clusters to de-
rive the final RCs that corresponded to the relevant MCSs.
The specific processes of segmentation and consolidation
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are described in the following section. We tracked the cor-
responding MCSs forward and backward to derive the life
cycle evolution of the precipitating cloud. The tracking algo-
rithm is also described in the following section.

3 Applications

3.1 Resilient segmentation of RCs

If one of the remaining RC corresponded to multiple MCSs,
then it was resiliently segmented according to the contours of
the MCSs. Figure 3 shows a precipitation event captured by
the GPM DPR, which occurred at 10:08 UTC on 1 June 2016
over eastern China. The near-surface rain rate was mainly
distributed in the interval 0.5-5mmh~! (Fig. 3a). The re-
gion of low-brightness temperature was scattered over sev-
eral small areas (Fig. 3b). The horizontal distribution of the
initial RCs showed that the precipitation pixels within 32—
35° N belonged to the same initial RC with an area of about
28000km? (Fig. 3c). This large initial RC had irregular

https://doi.org/10.5194/essd-14-1433-2022



A. Zhang et al.: Resilient dataset of rain clusters with life cycle evolution during April to June 2016-2020

(a) RC segmentation: step 1

(b) RC segmentation: step 2

1437

35°N 35°N
.:.' St e N .
34°N ’ 34°N i’%%r i
33°N . 3N [ i o
RS AL
ey ‘?-y’&';j//%{j/
32°N | 32°N | :
31°N 1 | ] 31°N L ' L
108°E  109°E  110°E  111°E  112°E  108°E 109°E 110°E 111°E  112°E
(c) dBN,, (d) D,
8.0 | 8.0 |-
E 60 [ 6.0
é L L
S
k=) - .
()
T 40r 40 |
2.0 2.0
I T ST TN TN TR [N TR SR S SO S N V1 _IlIAAAllIIlIJIIAAA

30.0 32.0 34.0 36.0 38.0

dBN,,

080 090 1.00 110 1.20 1.30
D, (mm)

Figure 4. (a, b) Demonstrations of RC pixels after two steps of RC segmentation algorithms and (c, d) the average DSD profiles of the
divided RCs, which occurred at 10:08 UTC on 1 June 2016. The colors of the DSD profiles corresponding to the colors of the RCs are shown

in panel (b).

boundaries and overlapped with seven different small MCSs,
with areas ranging from 75 to 1225 km? (Fig. 3¢ and d).

The segmentation algorithm consists of two main steps.
In the previous algorithms, we gridded the DPR pixels to
0.05° x 0.05° grids to obtain the overlapping grids between
the initial RCs and the MCSs. The first step was to remap
the overlapping grids to the DPR pixels using just the re-
verse method; the areas overlapping with different MCSs
were marked as different RC cores. Figure 4a shows the RC
cores after the first step of the segmentation algorithm. Seven
different RC cores are marked with different colors.

The second step was to use the image corrosion method
(Gonzalez and Thomason, 1978) to gradually allocate the
other DPR pixels within the initial RC to the RC cores.
Specifically, we iteratively increase the RC cores by adding
pixels around the area until all the other DPR pixels were
allocated. If, at a certain round of the collision process, one
certain pixel was allocated to multiple RC cores, its nearest
8 DPR pixels, including non-precipitation pixels, must con-
tain allocated precipitation pixels from different RC cores.
We would then calculate the rain rate gradients between the
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certain pixel and allocated precipitation pixels using rain rate
difference divided by distance, and the certain pixel would
be reallocated the RC core with minimum rain rate gradient.
Figure 4b shows that the initial RC was segmented into seven
new RCs. The largest three new RCs had areas of 7325 km?
(blue), 9850 km? (cyan), and 6225 km? (orange).

Figure 4c and d show the average DSD profiles of the three
largest RCs. In general, all the average profiles of the droplet
density (dBNy,) and the effective diameter (D) of the three
RCs show a clear turning point at 5.5 km height (around the
freezing level). This is because the lower layer of this pre-
cipitation event was very humid (not shown), and the pre-
cipitation microphysics within this event was dominated by
the “warm rain” process. However, the average near-surface
dBNy, of the southerly blue RC reached 37.4, which is sig-
nificantly higher than the other two (36 and 35.7); the av-
erage near-surface Dy, of this southerly blue RC was about
1.1 mm, which was significantly smaller than the other two
(about 1.15 mm). This suggests that there are significant dif-
ferences in the precipitation microphysics inside these three
RCs, so resilient segmentation of the RC is required.

Earth Syst. Sci. Data, 14, 1433-1445, 2022
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different RCs or MCSs.

3.2 Resilient consolidation of RCs

After the segmentation process, each RC had only one cor-
responding MCS. However, there may still be multiple RCs
corresponding to one MCS. For consistency, we wanted to
consolidate these multiple RCs into one single RC.

Figure 5 shows a precipitation event captured by the GPM
DPR that occurred at 23:09 UTC on 2 June 2020 over the
East China Sea during the Meiyu period. The horizontal
distribution of the 10.4um brightness temperature shows
that the Meiyu clouds extended northeasterly from Shang-
hai to South Korea (Fig. 5b). The corresponding MCS of
this event consisted of two parts: a southerly near-circular
MCS and a northerly elongated MCS (Fig. 5d). The southerly
near-circular MCS mainly corresponded to a large RC with
smooth boundaries and intense precipitation (Fig. 5a and
c). The central near-surface rain rate within the large RC
exceeded 10mmh~!. The northerly elongated MCS corre-
sponded to multiple small initial RCs with irregular bound-
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aries and weak precipitation (Fig. 5a and c¢). The near-surface
rain rate of the RCs was mostly weaker than 1.5mmh~!.

Following the resilient consolidation principle, the small
segmented RCs corresponding to the northerly elongated
MCS were consolidated into one new RC (Fig. 6a and b).
The average DSD profiles of the main RCs before and after
consolidation are presented in Fig. 6¢ and d. The precipita-
tion microphysics were dominated by ice-phase processes.
Above the frozen layer, the droplet size increased with de-
creasing height due to the deposition, riming, and aggrega-
tion growth of droplets (Y. Chen et al., 2020b). Below the
frozen layer, the droplet size gradually decreased with de-
creasing height as a result of evaporation. The near-surface
dBN,, was around 33, and the near-surface D,, was about
1.02 mm, indicating typical stratiform precipitation (Bringi
et al., 2006; Wen et al., 2016). Specifically, the DSD profiles
of the main RCs were fairly similar, proving that the consol-
idation process was reasonable.

https://doi.org/10.5194/essd-14-1433-2022
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By carrying out these resilient processes of filtration, seg-
mentation, and consolidation on the initial RC, we obtained
the final RC that had a one-to-one correspondence with the
relevant MCS.

3.3 Life cycle evolution of the MCS

The life track of one final RC was derived from its cor-
responding (one-to-one) MCS. We took the corresponding
MCS as the origin and tracked forward and backward from
the MCS at temporal intervals of 1 h. The MCS tracking al-
gorithm followed the widely used areal overlapping method
with speed correction (Machado and Laurent, 2004; Fiolleau
and Roca, 2013a; Ai et al., 2016; Chen et al., 2019; Wall
et al., 2020). The threshold of the areal overlapping ratio was
set to 50 % — that is, the overlapping area of successive MCSs
must be > 50 % of the area of the MCS at both later and ear-
lier times. We first evaluated the moving speed of the MCS in
the study area based on a preliminary tracking result without
speed correction.

The movement of the MCS relied highly on the latitude
and month as a result of the variance of the high-level wind
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field (Feng et al., 2021). Figure 7 shows the derived rela-
tionships between the moving speed of the MCS and lati-
tude from April to June. In general, the zonal speed of the
MCS was larger than the meridional speed, but their stan-
dard deviations were similar. The high-level wind field was
weak in the region 0—10° N, which is affected by tropical de-
pressions, so the average zonal and meridional velocities of
the MCS were close to 0 (Fig. 7a and b). To the north of
10° N, the average zonal velocity of the MCS was seen as an
eastward movement affected by high-level westerly winds,
whereas the average meridional velocity was seen as a north-
ward movement (Fig. 7a and b). The average zonal speed of
the MCS reached a peak at around 30° N, corresponding to
the position of the subtropical jet steam (Fig. 1).

The average moving speed of MCSs was similar in dif-
ferent months from April to June (Fig. 7a and b), but their
standard deviations showed clear differences (Fig. 7c and
d). In the area at about 40° N, the standard deviations of
the zonal and meridional speeds in April reached 1.4° Eh~!
and 1° Nh~!, respectively. By contrast, the standard devia-
tions of the zonal and meridional speeds in June were about

Earth Syst. Sci. Data, 14, 1433-1445, 2022
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Figure 7. (a, b) Average zonal and meridian moving speed of MCSs and (¢, d) their standard deviations derived from the preliminary

tracking result.

0.5°Eh~! and 0.4°Nh~!, respectively. The reason for the
differences in these standard deviations requires further study
but may be related to the northward movement of the western
Pacific subtropical high before the onset of the Meiyu season
(Li et al., 2019). Besides, the movement of the MCS was
fairly consistent during the Meiyu season, which usually oc-
curs in June, as a result of the influence of a quasi-stationary
front; the standard deviation of the moving speed of MCS
would therefore be small.

We used the average velocity of the MCS (7) as the initial
velocity of the formal tracking algorithm. The standard devi-
ation of the velocity of MCS was w,. The forward tracking
algorithm (similar for backward tracking) was as follows:

1. Assuming the MCS at time O to be set {Ag}, use the
average velocity 7 to calculate the possible set {A}} (t =
1) of the MCS at time 1.

2. Use {A}} and the areal overlapping method to determine
the actual MCS set {A,} at time ¢. If {A,} does not exist,
stop tracking.

Earth Syst. Sci. Data, 14, 1433-1445, 2022

3. Calculate the instantaneous moving velocity of MCS (r)
from {A;} and {A,_}. If r exceeds the range of [r —
Wr, T+l letr =7.

4. Use the instantaneous velocity r and {A;} to calculate
the possible set {A;H} of the MCS at time 7 + 1.

5. Lett =t + 1 and skip to step 2.

Figure 8 shows an example of the tracking algorithm.
The precipitation event occurred at about 13:00 UTC on
20 June 2016 over Kyushu Island, Japan (Fig. 8d). The
gray and light blue areas represent the estimated MCS {A;},
whereas the deep blue and light blue areas represent the ac-
tual MCS {A/}. In this case, the estimated MCS showed good
agreement with the actual MCS, with the areal overlapping
ratio reaching 80 % at most times (Fig. 8). During the east-
ward to northeastward movement of the MCS, the shape of
the MCS gradually elongated along the direction of move-
ment. Figure 8a and b show that the area of the MCS changed
dramatically when splitting. We therefore do not recommend
the use of only the temporal variance of the MCS area to
identify the life stage of MCSs.

https://doi.org/10.5194/essd-14-1433-2022
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Figure 8. Demonstration of the tracking process for the precipitation event occurring at about 13:00 UTC on 20 June 2016. The light blue
and deep blue areas indicate the actual MCS. The gray and light blue areas indicate the calculated MCS from the last record.

Figure 9a shows the entire moving track of this MCS. The
MCS had a lifetime of 34 h with a moving track > 2000 km.
The MCS originated on the ocean about 50km west of
Kyushu Island, Japan, and then moved eastward for about
10 h. After reaching Shikoku Island, the direction of move-
ment turned northeastward, and the MCS lasted for another
24 h until it dissipated on the ocean about 1000 km east of
Honshu Island.

Figure 9b and ¢ show the temporal variations in several im-
portant parameters of the MCS. During the life cycle, the area
of the MCS first increased and then decreased over time; the
peak MCS area of 250 000 km? occurred at about one-third
of the life cycle (Fig. 9b). The moving speed of the MCS
ranged from 30 to 120kmh~! but was about 60 kmh~! dur-
ing most of the life cycle (Fig. 9b). The temporal variations
in the average and minimum 10.4 um brightness tempera-
ture showed first a sharp decrease and then a slow increase
(Fig. 9¢). At the origin time, the brightness temperature of
the MCS was in the trough period, and the area was increas-
ing, suggesting that this precipitation event was caused by a
mature-stage MCS.

https://doi.org/10.5194/essd-14-1433-2022

The final dataset provides both three-dimensional pre-
cipitation information and life cycle information of 70 805
RCs and their corresponding MCS tracks during April to
June 2016-2020 over eastern Asia. The precipitation param-
eters include the area, central location, average near-surface
rain rate, average storm-top height, average Ku-band reflec-
tivity profile, and average DSD profile of RCs; the life cycle
information contains the time series of area, central location,
and minimum and average cloud-top brightness temperature
of corresponding MCS tracks. Specifically, the central lati-
tude and longitude of RCs and MCSs in the dataset are de-
fined as the average of all RC pixels (or MCS pixels), so the
centroid may lie outside the contour.

4 Data availability

The resilient dataset of rain clusters with life cycle evolution
is freely available at https://doi.org/10.5281/zenodo.6198716
(Zhang et al., 2022).
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Figure 9. (a) Moving track of the MCS occurring at 13:00 UTC
on 20 June 2016 and (b) temporal variations in the area, speed,

and (¢) minimum and average 10.4 um brightness temperature of
the MCS.

5 Discussion and conclusions

We constructed a resilient dataset of rain clusters with life cy-
cle evolution based on observations from the GPM DPR and
Himawari-8 AHI. The three-dimensional precipitation struc-
ture of the RC was provided by GPM DPR data, and the rel-
evant life cycle evolution of the MCS was obtained from the
Himawari-8 AHI. The purpose of this dataset is to facilitate
three-dimensional studies of the life cycle evolution of pre-
cipitation. In the process of constructing the dataset, we used
a series of satellite data processing methods as summarized
in the following.

First, using a connected component analysis method, we
extracted initial RCs and MCSs from GPM 2ADPR orbital
data with a horizontal resolution of 5km and Himawari-
8 AHI 10.4 um channel hourly grid data on 0.05° x 0.05°
grids. The contours of the initial RCs and MCSs were differ-
ent as a result of factors, including the randomness of precipi-
tation, the mismatch between cold cloud top and near-surface
precipitation, the time differences between the two datasets,
and the truncation effect of the DPR swath.

Second, we performed a series of resilient reprocessing
steps to remove redundant contour information between the
initial RCs and the MCSs, including filtration, segmentation,
and consolidation on the initial RCs. We obtained the final
RCs, which correspond one-to-one to the relevant MCSs. To
evaluate the effectiveness of these algorithms, we carried out
two case studies on the segmentation and consolidation al-
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gorithms. The results showed that the final RCs segmented
by the algorithms had different DSD features, whereas those
initial RCs with similar DSD profiles were consolidated into
one final RC, indicating that our reprocessing algorithms
were reasonable and necessary.

Third, we tracked the relevant MCS, corresponding one-
to-one to the final RC, both forward and backward to obtain
the life cycle evolution. The specific tracking algorithm is
given in the main text and is based on the areal overlapping
method with speed correction. The case study of the tracking
algorithm showed that the temporal evolution of the cloud-
top brightness temperature was more suitable for identifying
the cloud life stages than the temporal evolution of the area of
the MCS. The shape of the MCS gradually elongated along
the direction of movement during the life cycle of the MCS.

We then calculated the area, central location, mean cor-
rected radar reflectivity, mean DSD profiles, mean storm-top
height, mean near-surface rain rate, and other precipitation
information of the final RC and the temporal evolution of
area, central location, cloud-top brightness temperature, and
other information of the MCS from the tracking results. Both
the RC information and the life cycle information of relevant
MCS were stored in the resilient dataset.

This new dataset greatly reduces the size of the dataset
from > 200 GB per month to < 10 MB per month and avoids
complex data processing algorithms, which will facilitate
studies of event-based precipitation and its life cycle evolu-
tion. The cloud parameters with vertical revolution retrieved
from Himawari-8 AHI will be added to the dataset to investi-
gate the relationships between cloud microphysics, precipita-
tion microphysics, and cloud life cycle further (Y. Chen et al.,
2020a). This work is now in progress but is not reported here
due to the limited length of the paper. We will also develop
and optimize our algorithms to further improve our dataset,
such as using Himawari-8 data with a higher temporal resolu-
tion and longer time periods and segmenting the MCS based
on convective cores.
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