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Abstract This study evaluates the capability of the Coupled Model Intercomparison Project Phase 6
(CMIP6) models to simulate El Nifio-Southern Oscillation teleconnections in the Southern Hemisphere during
austral summer. The wave trains from the tropical Pacific to the Amundsen Sea are underestimated and too far
westward in CMIP6 simulations. However, Atmospheric Model Intercomparison Project Phase 6 (AMIP6)
experiments well capture the observed location and amplitude of the teleconnection. El Nifio and La Nifia-
related tropical precipitation anomalies are underestimated in CMIP6 and have their maximum amplitude too far
westward, while the precipitation responses in AMIP6 simulations are similar to those observed. The weaker
precipitation response in CMIP6 likely arises from a cold bias in climatological-mean SST, which reduces the
sensitivity of precipitation to SST anomalies. Increased resolution in coupled experiments eradicates the
westward bias in the El Nifio and La Nifia-related circulation anomalies over the Amundsen Sea, but not their
insufficient amplitude.

Plain Language Summary Abnormally warm and cold sea surface temperatures (SST) in the
tropical Pacific during El Nifio and La Nifia events, respectively, generate atmospheric circulation anomalies
that propagate across the Southern Hemisphere toward the Amundsen Sea, where they influence west Antarctic
climate. In this study, we evaluate how well state-of-the-art climate models simulate these El Nifio and La Nifia-
related teleconnections. We find that free-running models simulate teleconnections that are too weak and too far
westward. When models are provided with realistic SST however, they well simulate the teleconnection
location and amplitude. The errors in free-running models likely occur because the models are too cold in the
tropical Pacific, and this reduces the sensitivity of simulated rainfall to SST anomalies; and the SST anomalies
are too far westward. Increased ocean resolution eradicates the error in the location of the El Nifio and La Nifia
teleconnections but does not substantially improve their strength.

1. Introduction

The El Nifio—Southern Oscillation (ENSO) is one of the dominant modes of tropical coupled atmosphere-ocean
variability on interannual time scales (Wang & Fiedler, 2007), influencing global climate (Cai et al., 2011;
DeConto & Pollard, 2016; Li et al., 2021; Yang et al., 2024; Yuan et al., 2020). ENSO-related anomalous
convective heating generates stationary Rossby wave trains curving poleward and eastward toward Antarctica
(Ciasto et al., 2015; Ding et al., 2012; Dong et al., 2023; Simpkins et al., 2016; Turner et al., 2013). During El
Nifio, the wave train from tropical Pacific induces an anomalous high-pressure center over the Amundsen Sea,
which weakens the Amundsen Sea Low (ASL) (Chen et al., 2022; Ding et al., 2011; Li et al., 2015; Raphael
et al., 2016; Turner et al., 2013). This leads to northerly and southerly wind anomalies to the west and east of the
anomalous high-pressure, respectively, causing anomalous warm and cold advection (Gushchina et al., 2022;
Scott et al., 2019), which increases sea ice in the Bellingshausen Sea and decreases sea ice in the Ross Sea (Isaacs
et al., 2021; Wang et al., 2023). The associated anomalous circulation also exerts a non-negligible impact on ice
shelf thinning through surface and basal melt (Huguenin et al., 2024; Li et al., 2023; Nicolas et al., 2017; Paolo
et al., 2018).

The teleconnection patterns triggered by ENSO are sensitive to the location and amplitude of tropical sea surface
temperature (SST) and precipitation anomalies, through their influences on convective heating. Eastern Pacific
ENSO events often co-occur with the Indian Ocean Dipole, affecting a broader area across the Ross-Amundsen
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and Bellingshausen-Weddell Seas, whereas the central Pacific ENSO has a more limited and localized impact
(Guo et al., 2022; Zhang et al., 2021). Additionally, background flow patterns, particularly the subtropical jet, and
transient eddy feedback also contribute to the differences in the geopotential height response in the mid-to-high
latitudes (Beverley et al., 2021; Gillett et al., 2023; Kosaka & Nakamura, 2006; Wang et al., 2022a). The sub-
tropical jet can support the development of an effective Rossby wave source, and the shift in the jet exit tends to
alter the ENSO-related teleconnection pattern in the Southern Hemisphere, particularly during austral winter
(Gillett et al., 2023; Sardeshmukh & Hoskin, 1988; Simmons et al., 1983; Wang et al., 2022b). The strength of the
ENSO teleconnection to the Amundsen Sea region increases linearly with El Nifio amplitude until it reaches its
peak (Yiu & Maycock, 2020). However, there appear some systematic biases relevant to ENSO and the gener-
ation and propagation of its teleconnection in current models. The cold bias in mean-state SST in the eastern
Pacific “cold tongue” and the excessive westward extension of SST anomalies has been discussed previously
(Jiang et al., 2021; Li & Xie, 2014; Li et al., 2019). This cold bias contributes to an underestimation of tropical
precipitation response to ENSO-related SST anomalies (Lin et al., 2024; Wang et al., 2021; Williams et al., 2024).
Previous studies suggest that the underestimation of precipitation sensitivity to local SST and the error in
modeling extratropical progresses may lead to underestimated ENSO teleconnections in the Northern Hemisphere
(Good et al., 2021; Hardiman et al., 2022; Williams et al., 2023).

Here, we investigate the performance of coupled climate models from Coupled Model Intercomparison Project
Phase 6 (CMIP6) in simulating ENSO teleconnections in the Southern Hemisphere and attempt to understand the
biases (Eyring et al., 2016). We focus on austral summer due to the significant impact of ENSO on the West
Antarctic climate, particularly, ice shelf surface melt, which predominantly occurs during summer in the current
climate (Fang et al., 2024; Nicolas et al., 2017; Wang et al., 2023). However, for completeness, we include some
analysis of the other seasons. Given the important role of the ASL on Antarctic climate, the reliability of climate
models to simulate the influence of ENSO on the ASL is a primary focus of this study.

2. Data and Methods

We analyze the monthly outputs from the historical experiments of 60 CMIP6 models for the period of 1850—
2014, and Atmospheric Model Intercomparison Project Phase 6 (AMIP6) experiments from 46 models for the
period of 1979-2014 (refer to Tables S1 and S2 in Supporting Information S1). Additionally, we use hist-1950
simulations from 9 models with high oceanic resolution (HR; 0.25° or finer) and medium-to-high atmospheric
resolution (139 km or finer) from the High Resolution Model Intercomparison Project (HighResMIP) for the
period of 1950-2014 (Haarsma et al., 2016) (Table S3 in Supporting Information S1). For consistency, all model
data sets are horizontally interpolated onto the same 2.5° X 2.5° grid using a bilinear interpolation method. We use
all available ensemble members of each model, where the members within a model differ only in their initial
conditions. This allows us to explore both the influence of internal variability (spread between members from a
given model) and model uncertainty (spread between ensemble-means of different models). The uncertainty in
the multi-model ensemble mean (MEM) is represented by calculating the standard error of the ensemble-means
for each model, scaled by 1.96 to capture a 95% confidence interval.

This study analyzes reanalysis and observational data sets for the period of 1979-2023 as a reference. The data
sets used include (a) SST data from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST), version 1
(Rayner et al., 2003); (b) precipitation data from the Global Precipitation Climatology Project (GPCP) (Adler
et al., 2003); and (c) winds and geopotential height from fifth generation European Centre for Medium-range
Weather Forecasts (ECMWF) atmospheric reanalysis (ERAS) released by the ECMWEF (Hersbach et al., 2019).

We use standardized Nifio3.4 index, which averages SST anomalies over 170°W-120°W, 5°S-5°N, to measure
the ENSO intensity, and the index is calculated separately for observations and each model simulation. El Nifio
and La Nifia events are defined based on thresholds of 1 and —1 standard deviation, respectively. Given that the
peak phase of ENSO occurs during austral summer (December—February, inclusive; DJF), we focus on this
season. We note that although we use the longest possible time period for the models, 1850-2014, to get better
sampling of El Nifio and La Nifia events, our main results are also consistent if we sampled the models over the
same time period as the observations (not shown).
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Figure 1. Composite patterns of DJF 200-hPa geopotential height anomalies in El Nifio and La Nifia in ERAS (a, b), CMIP6 MEM (c, d), AMIP6 MEM (e, f), and HR
MEM (g, h). White dot marks the center of geopotential height response in the Amundsen Sea region. The * in the subtitle indicates that the zonal mean of geopotential
height has been subtracted. Stippling in all panels indicates that the composite result is above the 95% confidence level, with more than 70% of models agreeing on the

sign of the MEM in (c)—(h).

3. Simulated ENSO Teleconnections

Figure 1 shows the composite-mean pattern of 200-hPa geopotential height anomalies during El Nifio and La Nifia
in ERAS and CMIP6 MEM. During El Nifio, the anomalous tropical heating induces a Rossby wave train with a
positive center located over the central tropical Pacific, a negative node over western South Pacific, and a second
positive over the Amundsen Sea (Figure 1a). The pattern is reversed during La Nifia (Figure 1b). The CMIP6
MEM shows broadly similar wave train patterns, but their amplitude is notably weaker than ERAS, for both El
Nifio and La Nifia (Figures 1c and 1d). Similar results are also found for austral winter (Figure S1 in Supporting
Information S1). The anomalous geopotential height center over the Amundsen Sea, important for west Antarctic
climate, is simulated too far westward, again in both El Nifio and La Nifia. AMIP6 experiments prescribed with
observed global SST and sea ice show wave train responses that are very similar to observations in both their
location and amplitude (Figures le and 1f).

We further quantify the position and magnitude of the geopotential height anomaly center in the Amundsen Sea
region (45°-90°S, 60°-180°W; Figure 2). Although there is substantial variation between members of a single
model and between model ensemble means, significant common biases are evident. The amplitude of Amundsen
Sea anomaly center during El Nifio is 48 m in ERAS but 32 m in the CMIP6 MEM. Although the CMIP6 MEM is
within the range of observational uncertainty (Table 1), due to relatively poor sampling of observed El Nifio
events, it is striking that most members and models simulate weaker anomalies than observed, which is highly
unlikely by chance (Figure 2a). During La Nifia, the geopotential height response in the CMIP6 MEM is
significantly weaker than ERAS (=51 and —25 m, respectively; Table 1), and all models and nearly all members
underestimate the anomaly center amplitude (Figure 2a). Similar underestimation is found in the other three
seasons (Figure S2 in Supporting Information S1).
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Figure 2. Magnitude and longitude of maximum geopotential height anomaly within 45°-90°S, 60°~180°W in CMIP6 (a, b) and AMIP6 (c, d). Red and blue crosses
refer to El Nifio and La Nifia, respectively, for each member in each model, and red and blue dots represent the ensemble means for each model. Thin red and blue
horizontal lines indicate the MEM for El Nifio and La Nifia, respectively, and thick red and blue lines show corresponding values from ERAS.

For the longitude of anomaly center, CMIP6 models tend to simulate a more westward location (Figure 2b), with a

displacement of approximately 10° in El Nifio and a notably significant 23° in La Nifia compared to ERAS
(Table 1). The simulated westward bias of the Amundsen Sea anomaly center is present in most seasons and
ENSO phases, except during El Nifio in winter and La Nifia in autumn. However, it is only statistically significant
for La Nifia in austral summer (Figure S2 in Supporting Information S1).

The AMIP6 MEM, however, closely matches ERAS in both the longitude and amplitude of the anomaly center
(Table 1). This indicates that when prescribed with historical global SST and sea ice, atmospheric models well
reproduce the ENSO teleconnection to the Amundsen Sea. The geopotential height response in the high latitudes
is relatively quasi-barotropic, with the structure at 500 hPa being similar to that at 200 hPa (Figure S3 in Sup-
porting Information S1). The weaker amplitude of the Amundsen anomaly center in CMIP6 compared to ERAS is

evident throughout the troposphere for both El Nifio and La Nifia. At all tropospheric levels, AMIP6 is closer to
ERAS (albeit still weaker) than CMIP6 (Figure S4 in Supporting Information S1).

Table 1

Magnitude and Longitude of the Maximum Geopotential Height Anomaly Within 45°-90°S, 60°—180°W, the Nifio3.4 Index, and Maximum Tropical Precipitation (Zonal
Maximum of Meridional Mean Between 150°E and 140°W for 5°S-5°N), Along With Their 95% Confidence Intervals

Max precipitation

Amplitude (m) Longitude (W) Nifio3.4 index (°C) (mm/day)
El Nifio La Nifa La Nifia El Nifio La Nifa El Nifio La Nifa
ERA5/HadiSST/GPCP 47.7 +20.6 —50.8 +£ 18.4 117.5 £ 132 1.7+ 04 —-1.5+02 69+ 14 —4.1+0.9
CMIP6 31.6 £ 3.1 —253 + 1.6 140.0 + 4.0 1.7 £0.1 —-1.6 £0.1 46 +£04 -3.6+03
AMIP6 479 +5.1 —46.3 £4.0 122.5 + 4.4 1.7+£04 -15+02 6.7+03 -50£03
HR 38.0£9.2 -27.8 + 4.7 1275 £ 11.4 1.5+£02 —-14+£02 52+07 —4.0 £ 0.6

Note. Simulated values that are significantly different to ERAS are shown in bold font. The Nifio3.4 index in AMIP6 are derived from HadISST.
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Figure 3. SST anomalies during El Nifio and La Nifia in observations (a, b), CMIP6 MEM (c, d), and HR MEM (e, f). Tropical climatological SST biases relative to
observations in CMIP6 (g) and HR models (h).

4. Model SST Biases and Precipitation Sensitivity

The primary distinction between CMIP6 and AMIP6 is that the CMIP6 experiments simulate the interaction
between atmosphere and ocean and therefore, exhibit SST biases, whereas the AMIP6 experiments are atmo-
spheric models prescribed with historical ocean surface boundary conditions and therefore, by design, have
realistic SST. Figure 3 shows the magnitude of SST anomalies in the tropical Pacific in the CMIP6 MEM is
similar to that observed, but the simulated SST anomalies exhibit a westward extension in both El Nifio and La
Nifia. Thus, the westward bias in the position of the Amundsen Sea anomaly center is likely related to the
westward extension of the SST anomalies that determine the location of tropical heating and forcing of anomalous
Rossby wave activity.

Strong convective activity and heavy rainfall in the tropics release latent heat and serve as an important forcing
which triggers wave trains toward Antarctica. Figure 4 shows the positive precipitation and divergent wind re-
sponses during El Nifio are significantly weaker than observed, even though the magnitudes of ENSO SST
anomalies are realistic in CMIP6 (Table 1). Also, the tropical precipitation anomalies extend too far westward
(Figure 4c), consistent with the westward extension of SST anomalies (Figure 3¢). The maximum EI Nifio-related
precipitation anomaly in GPCP is 6.9 mm/day, while in CMIP®6, it is 4.6 mm/day. In contrast, in AMIP6, the
maximum precipitation is 6.7 mm/day, and divergent wind anomalies are not significantly different from those in
GPCP, which helps explain why the teleconnection amplitude is also better simulated in AMIP6 than in CMIP6.
The Rossby wave source, which arises from the interaction between divergence and vorticity (the key factors in
generating Rossby waves), is found to be underestimated in both tropics and subtropics in the CMIP6 models,
while the AMIP6 simulations perform better (Figure S5 in Supporting Information S1). Similar results are found
for La Nifia, with CMIP6 models showing weaker and overly westward equatorial dry anomalies, compared to
GPCP, whereas the AMIP6 simulations produce more realistic anomalies.

Previous studies reveal that the sensitivity of convection to a unit SST change increases monotonically with
increasing mean state SST until it reaches a peak at approximately 28-29°C, after which it declines (Johnson &
Xie, 2010; Lin et al., 2022; Waliser & Graham, 1993; Xie et al., 2020). Thus, even with the similar magnitude of
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Figure 4. Composite patterns of precipitation and divergent wind anomalies during El Nifio and La Nifia in GPCP (a, b), CMIP6 MEM (c, d), AMIP6 MEM (e, f), and
HR MEM (g, h). The shading of the vectors represents the magnitude of the values.

SST anomalies, the resulting precipitation anomalies can vary substantially between models and observations
(and between different models). Figure 3g shows a 1°C cold bias of climatological-mean SST in the CMIP6
models, which suggests that the tropical precipitation sensitivity to SST is underestimated and helps to explain
their too weak precipitation response to ENSO (Figure 4). Since the sensitivity of convection to SST increases
with temperature before reaching its peak, the CMIP6 error in precipitation response is more pronounced during
El Nifio years, when SST is increased, compared to La Nifia years when SST is decreased (Table 1).

5. Improvements at High Resolution

The results so far suggest that improved simulation of the mean state SST in coupled models may improve the
accuracy of ENSO teleconnections. Liu et al. (2022) use the HighResMIP and find that increasing ocean reso-
lution helps to improve the SST mean state in equatorial Pacific. Williams et al. (2024) show that bias of the
westward extension of SST anomalies in the tropics during El Nifio and La Niiia is largely eliminated at higher
ocean resolution, resulting in a more realistic location of the ENSO teleconnection to the Aleutian Low. Here,
using the same simulations as Williams et al. (2024), we find a considerable improvement in the location of the
geopotential height anomaly center in the Amundsen Sea, in HR compared to CMIP6 (Table 1), which we relate
to the improved simulation of the westward extent of SST and precipitation anomalies in HR compared to CMIP6
(Figures 3 and 4). The CMIP6 and HR models differ in their atmospheric and oceanic resolution; however,
Williams et al. (2024) demonstrated that it is increased oceanic resolution that leads to the improvements in HR.

The amplitude of the Amundsen Sea anomaly center is slightly higher in HR than CMIP6, but not significantly
different, for El Nifio or La Nifia (Table 1). For La Nifia, the amplitude remains significantly underestimated
compared to ERAS. Thus, increased resolution does not resolve the overly weak ENSO teleconnection to the
Amundsen Sea, consistent with Williams et al. (2024) results for the ENSO teleconnection to the Aleutian Low.
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During El Nifio, the maximum tropical Pacific precipitation anomaly is significantly increased in HR compared to
CMIPG6, albeit still less than observed. During La Nifia, the precipitation anomaly in HR models is also of greater
magnitude than CMIP6 and within observational uncertainty. Given the stronger precipitation anomalies in HR
than CMIP®6, it is perhaps surprising that the amplitude of the teleconnection is not appreciably improved. This is
especially true for La Nifia, when HR shows stronger than observed precipitation anomalies but a significantly too
weak anomaly center over the Amundsen Sea. This suggests that model errors in the teleconnection strength may
not solely relate to tropical biases, but also problems in the extratropics that influence wave propagation,
consistent with Williams et al. (2023) for the ENSO teleconnection in the Northern Hemisphere. The realistic
simulation of teleconnection strength in AMIP6 may provide some clues in this regard. Prescribing observed SST
not only results in better ENSO-related SST and precipitation anomalies, but also reduces biases in the back-
ground circulation (Priestley et al., 2023), which may lead to improved ENSO teleconnections. Therefore, the
weak teleconnections in CMIP6 and HR may partly arise due to errors in the circulation mean state, which are
reduced in AMIP6. Previous studies have mentioned that the subtropical jet and eddy feedback could affect both
the position and intensity of ENSO teleconnections (Gillett et al., 2023; Wang et al., 2022a, 2022b). However, the
subtropical jet is absent during austral summer (Figure S6 in Supporting Information S1) in ERAS, CMIP6, and
AMIP6, and therefore cannot affect the position and intensity of ENSO teleconnections or account for the weak
teleconnection amplitude in CMIP6. Barotropic energy conversion in the subtropical Pacific (i.e., the conversion
of local kinetic energy from the basic state to perturbations) is weaker in CMIP6 compared to ERAS (Figure S7 in
Supporting Information S1), which may partly explain the weaker teleconnection in CMIP6. The AMIP6 models
simulate greater barotropic energy conversion (Figure S7 in Supporting Information S1), which could be one
reason for their stronger ENSO teleconnections compared to CMIP6.

6. Conclusions

During ENSO events, anomalous SST in the tropical Pacific can trigger wave trains propagating from the tropics
to the Amundsen Sea, influencing climate over West Antarctica. This study investigates the capability of the
CMIP6 models to reproduce this teleconnection and reveals that the models generally underestimate its intensity
and place it too far westward, in El Nifio and especially La Nifia. In contrast, AMIP6 experiments, prescribed with
historical global SST and sea ice, accurately reproduce the location and amplitude of the teleconnections.

The biases in teleconnections in the CMIP6 models stem from the underestimation and too far westward extension
of ENSO-related precipitation anomalies. This underestimation occurs despite realistic magnitudes of ENSO-
related SST anomalies and is explained by a cold bias in the mean-state SST in the CMIP6 models, which re-
duces the sensitivity of precipitation to SST anomalies. In AMIP6, absent mean-state SST biases, the position and
intensity of precipitation anomalies are accurately simulated and thus, so is the location and the strength of the
wave train to the Amundsen Sea.

Increased oceanic resolution leads to improvement in simulating the SST mean state and westward extent of
ENSO-related SST anomalies, and consequently enhances the accuracy of anomalous precipitation and the
location of the teleconnection to the Amundsen Sea. However, even at high resolution, coupled models still
underestimate the intensity of the Amundsen Sea anomaly center, particularly during La Nifia, despite accurately
simulating the amplitude of ENSO-related precipitation anomalies that drive the wave train. Further work is
needed to better understand model biases in the propagation of the ENSO teleconnections from the tropics to the
extratropics.

Data Availability Statement

The HadISST data set is downloaded from the UK Met Office at https://www.metoffice.gov.uk/hadobs/hadisst/
data/download.html. The ERAS monthly reanalysis data can be downloaded from Hersbach et al. (2023). The
GPCP monthly precipitation data is downloaded from https://psl.noaa.gov/data/gridded/data.gpcp.html. The
CMIP6 and AMIP6 models used in this study are listed in Tables S1-S3 of the Supporting Information S1, and
their output are available at https://esgf-node.llnl.gov/search/CMIP6/.
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