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Abstract Compound warm extremes exert profound impacts on environment, health, and socioeconomics.
Yang et al. (2024) indicated a shift or transition from warm-dry extremes (WDEs), common in non-ice-covered
areas, to warm-wet extremes (WWEs) in ice-covered zones. Utilizing ERAS reanalysis data, this study
determined the duration and frequency of WDEs and WWEs across ice-covered and non-ice-covered regions. A
comprehensive analysis uncovers the physical mechanisms responsible for the paradigm differences and
attributes them to the weakening of land-atmosphere interaction caused by ice-cover, which inhibits soil
moisture feedback and reduces the intensity and duration of warm events in ice-covered areas. Both WDEs and
WWEs are associated with high-pressure systems (HPs). WDEs, situated directly beneath HPs, intensify due to
adiabatic warming from subsidence motions. Conversely, WWEs, located beneath the poleward fringes of HPs,
emerge from advective warming and moistening associated with poleward intrusions of warm-moist air.

Plain Language Summary Significantly rising temperatures can coincide with extreme weather
events such as droughts or rainstorms to form compound warm-dry extremes (WDEs) or warm-wet extremes
(WWESs), leading to more severe consequences than just hot weather alone. Recent findings indicate that WDEs
are more prevalent in non-ice-covered regions where people reside and crops are cultivated, while WWEs are
more common in ice-covered areas. This study seeks to comprehend the reasons behind the paradigm
differences of extreme events by analyzing the conditions during hot summers. Our research has identified two
primary causes for the paradigm differences. First, in non-ice-covered regions, the ground warms the overlying
air, which in turn dries out the soil, leading to even higher temperatures. This explains why more WDEs are
observed in these areas. However, in ice-covered regions, this process is inhibited by ice. Second, the high-
pressure systems accompanying these extreme events behave differently based on the presence or absence of
ice. In non-ice-covered regions, these systems are located directly above the regions, exacerbating the hot-dry
conditions by pushing air downwards. Conversely, hot-wet conditions occur in ice-covered regions because
these areas are situated beneath the poleward fringes of the systems, which transport warm and moist air from
the lower latitudes.

1. Introduction

In recent years, extreme high temperatures have often been observed to coincide with other extremes such as
heavy precipitation and droughts, and these compound extremes have received increasing attention due to their
more significant environmental and societal impacts compared to separate extremes (Feng et al., 2019; Ridder
et al., 2020). The prevalence of compound warm-dry extremes in populated and cropland areas, as well as their
impacts (e.g., public health risks, energy crisis, wildfires, etc.), has been discussed extensively in studies at both
regional and global scales (Afroz et al., 2023; Hao et al., 2018; Holmes et al., 2017; Liu & Zhou, 2023a, 2023b;
Mueller & Seneviratne, 2012; Salvador et al., 2023; Xu et al., 2023; Zscheischler & Seneviratne, 2017). However,
there has been less focus on compound warm extremes over polar ice sheets. Different from the predominant
synchronization of extreme warm and dry conditions in midlatitude environments, extreme high temperatures
over polar ice sheets tend to co-occur with precipitation, which have been observed in West Antarctica
(Djoumna & Holland, 2021; Nicolas & Bromwich, 2011), Antarctic Peninsula (Gorodetskaya et al., 2023), East
Antarctica (Clem et al., 2023), and Greenland (Mattingly et al., 2020; Xu et al., 2022).
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In contrast to the direct effect induced by warm-dry spells on midlatitude lands, warm-wet extremes over polar ice
sheets may lead to more complex and profound climate impacts. These warm and wet conditions can amplify the
vulnerability of ice sheets through triggering extensive surface melt, leading to destabilization of coastal ice,
significant ice mass loss, and freshwater inflow into the oceans (Bell et al., 2018; Hu et al., 2019; Stokes
etal., 2022). Ultimately, these processes contribute to accelerated sea level rise (DeConto & Pollard, 2016; Rignot
et al., 2011) and weakened Atlantic Meridional Overturning Circulation (Bakker et al., 2016; Gao et al., 2024;
Zhu et al., 2014). Given the significant impact of warm-wet extremes on ice-covered regions, Yang, Hu,
et al. (2024) pointed out that these areas exhibit a much higher synchrony of extreme warm and precipitation
events compared to the midlatitude lands, suggesting paradigm differences of compound warm extremes between
non-ice covered regions and ice-covered regions. This synchrony may arise from warm-moist air intrusions
discussed by previous studies over Greenland (Barrett et al., 2020; Bintanja et al., 2023; Pettersen et al., 2022;
Ward et al., 2020) and Antarctica (Gorodetskaya et al., 2023; Shields et al., 2022; Wang et al., 2023; Wille
et al., 2024).

Systematic studies of the new characteristics and physical mechanisms for compound warm-wet extremes over
ice sheets are also crucial under global climate change. On the one hand, the frequency, duration, and intensity of
warm extremes has increased (Barriopedro et al., 2023; Feron et al., 2021; Gonzalez-Herrero et al., 2022); on the
other hand, precipitation process tends to shift from a solid state to a liquid state (Bennartz et al., 2013; Schot
etal., 2023; Vignon et al., 2021). The combined effect of these two factors could result in a nonlinearly enhanced
surface melt on ice caps (Bintanja, 2018; McNeall et al., 2011). While the individual mechanisms associated with
compound warm-dry extremes have been widely explored, spanning from local processes (Libonati et al., 2022;
Miralles et al., 2019; Zhang et al., 2020) to large-scale modes of climate variability (Jiang et al., 2024; Mukherjee
et al., 2020; Yang, Shen, et al., 2024, Yang, Zeng, et al., 2024), there is still a lack of systematic analysis of the
compound warm-wet extremes. Moreover, an enhanced understanding of the warm-wet extremes over polar ice
sheets contributes to better identifying the model biases in numerical simulations and improving model simu-
lations and thus forecast performance (Cai et al., 2024; Ridder et al., 2021), especially over the cryosphere due to
scarce observations and complex dynamics (Deb et al., 2016; Leeson et al., 2018).

As we mentioned previously, Yang, Hu, et al. (2024) highlighted the prevalence of warm-wet extremes over polar
regions, which is different from the dominance of warm-dry extremes over the midlatitudes. This study, building
upon the perspectives proposed by Yang, Hu, et al. (2024), is aimed to provide robust evidence and physical
interpretations for the paradigm differences of compound warm extremes. First, we examine the percentages and
duration of WWEs and WDEs during summers from 1979 to 2022 in five representative regions: (a) Greenland
and (b) West Antarctica, which are marked by ice-covered surface and have suffered massive surface melt under
warm and wet conditions (Dou et al., 2023; Li et al., 2023); (c) Europe, (d) South China, and (e) the US Great
Plains, which are identified as the hotspots of research on severe heatwaves and droughts with regard to human
health risk and yield loss (Han et al., 2022; He et al., 2022; Tripathy & Mishra, 2023; Zhang et al., 2023). Second,
we investigate the relative atmospheric processes and surface energy budget through a composite analysis. The
associated land-air interaction is quantified by using a coupling metric (Miralles et al., 2012; Seo & Ha, 2022) to
provide an improved understanding of the crucial role in triggering the different compound warm extremes.

2. Data and Methods
2.1. Data

Daily averaged ERAS reanalysis fields for the summers of 1979-2022 (i.e., June, July, and August for the
Northern Hemisphere, and December, January, and February for the Southern Hemisphere) with a horizontal
resolution of 1° X 1° are used in this study. The daily averages are calculated from the hourly ERAS reanalysis
data provided by the European Center for Medium-range Weather Forecasts (Hersbach et al., 2020). The surface
variables include 2 m temperature (T), total precipitation (P), surface pressure, total cloud cover, integrated
moisture flux (IVT), actual and potential evaporation, soil water, sensible and latent heat fluxes, as well as net and
downward fluxes of shortwave radiation (SWR) and longwave radiation (LWR). Positive (Negative) values of
radiation and heat fluxes in ERAS are directed downwards (upwards), while positive (negative) values of
meridional water vapor flux indicate northward (southward) moisture transport. Geopotential height with a
vertical resolution of 10 pressure levels extending from 1000 hPa to 200 hPa are also analyzed.
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2.2. Definitions of Compound Extremes

The 75th and 25th percentiles of summer daily 7 and P from 1981 to 2010 are chosen as the thresholds for
extremes, denoted as 755, P;s, and P,s respectively. These percentiles allow a larger number of events to be
selected for analysis (Beniston, 2009). The co-occurrence of heatwaves (T > T,5) and extreme precipitation
(P > Py5) is defined as warm-wet extremes (WWEs) at each grid, while the co-occurrence of heatwaves and
extreme droughts (P < P,s) is defined as warm-dry extremes (WDESs). To identify WWEs or WDEs within an
area, we first assign one to the land grids where events occur and zero to those where non-events occur on a given
day (ocean grids are masked), and then calculate the regional means. Subsequently, a daily time series of the
spatial extent of events (i.e., percentage of gridpoints within a defined area that depict an event of interest) within
a study region, as well as the standard deviation of the spatial extent calculated from this time series, is obtained.
The days when the anomalous spatial extent exceeds one standard deviation are defined as extreme cases. To
further explore the mechanisms driving WWEs and WDEs, a composite analysis is applied to the extreme cases.
The 95% confidence levels for the WWEs or WDEs composite values deviated from the climatology (i.e., av-
erages over entire period from 1979 to 2022) are determined by the Student's #-test.

2.3. Coupling Metric

Land-atmosphere interactions, whose role in triggering or amplifying warm extremes has been highlighted in
previous studies (Hao et al., 2022; Miralles et al., 2014, 2019; Zhang et al., 2023), can be briefly described as a
feedback loop: when surface dryness is exacerbated by increasing atmospheric demand of water under anoma-
lously warm conditions, evaporation and its surface cooling effect progressively decline, leading to an accu-
mulation of sensible heat in the atmosphere and to decreases in the likelihood of precipitation that further
exacerbates the existing hotness and dryness. To quantify the strength of land-atmosphere interaction at a given
location, a coupling metric (r) related to surface energy flux anomalies and their skill in explaining the variation
of temperature (7') was proposed by Miralles et al. (2012) as:

r= [(R,, —JE) —(Rn—/lEp)/] X1 0

where R, refers to the surface net radiation, A is the latent heat of vapourization, and E and E, denote actual and
potential evaporation, respectively. The primes denote the standardized anomalies deviated from the climatology
defined in Section 2.2. The energy term (i.e., [(Rn - /1E)/ — (R, - lE,,)/]) denotes the contribution of surface
moisture deficiency to sensible heat flux anomalies. This term will be zero when surface moisture is sufficient to
meet the atmospheric demand, and it increases under dry conditions. Positive values of & are obtained in regions
where surface dryness can significantly contribute to extremely atmospheric warming through its effect on local
energy balance.

3. Results
3.1. Percentages and Duration of WWEs and WDEs

Figure 1a presents the global pattern of the percentages of WWEs days to the total number of WWEs and WDEs
days, illustrating the prevalence of compound warm extremes in summer. The percentages of WWEs exceed 80%
over portions of the polar ice sheets but falls below 20% over most midlatitude regions. This result indicates
paradigm differences of compound extremes between non-ice-covered zones, where WDEs prevail, and ice-
covered regions, where WWEs are common. We explore and compare the mechanisms for WWEs and WDEs,
focusing on two regions where WWEs prevail, including Greenland (GL) and West Antarctica (WA), as well as
three zones dominated by typical WDEs, including Europe (EU), South China (SC) and the US Great Plains
(USGP).

Figure 1b shows the duration of WWEs and WDE:s in the above five regions. Short-duration extremes lasting up
to 5 days account for more than 75% of both WWEs and WDEs, meaning that these two types of extremes are
predominantly short-duration events. There are a few cases that last more than 10 days, particularly over EU.
Overall, WDEs last longer than WWEs. Specifically, GL and WA WWE:s last less than 10 days, while some
WDEs in EU, SC, and USGP persist up to 15 days. In the following sections, we focus on the physical
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(a) Percentages of WWE days to total (WWE+WDE) days
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Figure 1. (a) Percentages of warm-wet extreme (WWE) days to the total number of WWE and warm-dry extreme (WDE) days during summer. (b) Percentages of WWEs
(WDEs) with different durations in all WWEs (WDESs) in five regions. The regions labeled A, B, C, D, and E in (a) represent Greenland (GL), West Antarctica (WA),
Europe (EU), South China (SC), and the US Great Plains (USGP), respectively. The percentages of WWEs (WDEs) in (b) are represented by blue (orange) bars.

mechanisms of the prevalent type of compound warm extremes in each region, namely WWEs in GL and WA but
WDEs in EU, SC and USGP.

3.2. Atmospheric Processes and Surface Energy Budget

By definition, near-surface warming during WWEs in GL and WA occurs in conjunction with increased pre-
cipitation. This does not occur during WDEs in EU, SC and USGP (Figure 2). During WWEs, robust high-
pressure systems (HPs) with a quasi-barotropic vertical structure occur over both GL and WA (Figures 2u and
2v), and the locations of WWEs, indicated by purple lines, are at the poleward fringes of HPs. The Greenland HP
is similar to southern Greenland blocking discussed by Pettersen et al. (2022) and Ward et al. (2020), while the
West Antarctic HP resembles the Antarctic Peninsula blocking studied by Bozkurt et al. (2022). Guided by the
poleward circulation associated with anticyclones, large amounts of heat and moisture from the lower latitudes are
transported toward the ice sheets (Figures 2p—2t). As discussed by previous studies (Pettersen et al., 2022; Ward
et al., 2020; Zou et al., 2021), these warm-moist air intrusions result in inland warming and, coupled with local
elevated elevation, lead to cloud formation (Figures 2k and 21) and precipitation (Figures 2f and 2g). In the areas
where cloud cover increases, downwelling SWR at the surface decreases (Figures 3k and 31). However, down-
ward LWR is greatly enhanced, amplifying surface warming over the ice-covered surface (Figures 3p and 3q).
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Figure 2. Atmospheric variables associated with the WWEs in GL and WA, and the WDEs in EU, SC and USGP. Shading represents daily composite anomaly values of
(a—e) 2 m temperature (units: K) (f—j) total precipitation (units: mm) (k—o) total cloud cover (units: %) (p—t) vertical integral of meridional water vapor transport (MIVT;
units: kg m~' s7"), and (u—y) height-longitude profile of geopotential height (units: gpm) at the latitudes marked by gray lines in (p—t). Purple contours in (k—o0) denote
positive 500 hPa geopotential height anomalies (units: gpm), with an interval of 15 gpm in (k, I, m, 0) and 5 gpm in (n). Solid (dashed) purple contours in (p—t) denote
positive (negative) surface pressure anomalies (units: hPa), with an interval of 1.5 hPa. Gray dots, as well as pink lines hatching in (k—o0) and (p—t), indicate the areas
where the anomalies are statistically significant at the 95% confidence level. Specifically, gray dots and pink lines hatching in (k—o) represent statistical significance for
total cloud cover and 500 hPa geopotential height anomalies, respectively. Gray dots and pink lines hatching in (p—t) represent statistical significance for MIVT and
surface pressure anomalies, respectively. Purple lines in (u—y) denote the main longitudes of compound extremes.

Most of the selected WWEs cases, as well as WDEs cases discussed below, share generalized characteristics
illustrated by the composite results.

During the WDEs in EU, SC, and USGP, HPs also prevail (Figure 2). However, in contrast to WWEs, WDEs are
normally located beneath HPs. When convection is suppressed by downdrafts at the center of HPs, precipitation is
reduced (Figures 2h-2j), and clouds are dissipated (Figures 2m—20). The former process can trigger drought, and
the latter creates clear-sky conditions that enhance SWR supply at the surface (Figure 3). Abnormal SWR is
absorbed and heats the ground. Then, more energy is lost via upwelling LWR from the surface into the atmo-
sphere (Figures 3r-3t), as well as via surface latent (Figures 3c—3e) and sensible heat fluxes (Figures 3h-3j). Total
surface energy differences between WWEs and WDEs indicate that in polar regions, WWEs are driven by
anomalous horizontal warm and moist air transport, but in the midlatitude regions, the WDEs are driven by
anomalous vertical descending motion.

3.3. Land-Atmosphere Interaction

Larger latent heat flux and sensible heat flux anomalies occur during WDESs over EU, SC, and USGP than during
WWEs over GL and WA (Figure 3). Previous studies have suggested that the land-atmosphere interaction
significantly contributes to the occurrence of WDEs, particularly to the lengthening of these events (Libonati
et al., 2022; Miralles et al., 2019; Seo & Ha, 2022; Zhang et al., 2020). We calculate the coupling metric to
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Figure 3. Surface energy budget associated with the WWEs in GL and WA, and the WDEs in EU, SC and USGP. Shading represents daily composite anomaly values of
(a—e) latent heat flux (units: W m2) (f—j) sensible heat flux (units: W m~?) (ko) downward shortwave radiation (SWR; units: W m™2), and (p—t) downward longwave
radiation (LWR; units: W m~2). Pink (blue) contours in (k—o0) denote positive (negative) net SWR anomalies (units: W m~2), with an interval of 10 W m~2. Pink (blue)
contours in (p—t) denote positive (negative) net LWR anomalies (units: W m™~2), with an interval of 5 W m ™2 Gray dots, as well as pink lines hatching in (ko) and (p-t),
indicate the areas where the anomalies are statistically significant at the 95% confidence level. Specifically, gray dots and pink lines hatching in (k—0) represent
statistical significance for downward SWR and net SWR anomalies, respectively. Gray dots and pink lines hatching in (p—t) represent statistical significance for
downward LWR and net LWR anomalies, respectively.

compare the strength of land-atmosphere interaction during WWEs and WDEs. The positive coupling metric over
non-ice-covered regions indicates that the land-atmosphere interaction is indeed active during WDEs
(Figures 4c—4e). Specifically, under the control of high-pressure systems (HPs), moisture from non-ice-covered
surfaces evaporates via adiabatic warming of subsidence motions and excessive downward SWR. These non-ice-
covered surfaces can hardly be re-moisturized as precipitation is limited by subsidence motions. Reduced soil
moisture (Figures 4h—4j) allows the surface to heat more quickly due to weakened evaporation, and enhances
upward sensible heat flux that warms the overlying air. This process further strengthens the existing HPs above,
which exacerbates surface dry conditions in turn. Thus, a positive feedback loop to trigger and maintain WDEs is
established, explaining why prolonged compound warm extremes tend to occur over non-ice-covered zones.

However, surface turbulent heat fluxes anomalies are negligible over the ice-covered regions. Since deep HPs are
commonly thermally maintained, their centers tend to be located above the warmer oceanic surface away from the
ice-covered regions, situating the ice sheets on their fringes. As a result, these deep HPs can induce warm-moist
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Figure 5. Schematic diagram illustrating the WWEs (top) over the ice-covered surface and the WDEs (bottom) above the non-ice-covered surface.

air intrusions by horizontal advective motions (Pettersen et al., 2022; Vignon et al., 2021) and thus result in the
high prevalence of WWESs over the polar ice sheets. All the aforementioned local dynamic processes and surface
energy responses controlled by HPs during WWEs and WDEs are summarized in the schematic diagram as shown
in Figure 5.
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4. Conclusions

In this study, we reveal the physical mechanisms for paradigm differences of compound warm extremes between
midlatitude regions and ice-covered polar regions. Warm-wet extremes (WWEs) and warm-dry extremes
(WDEs), the two different types of compound warm extremes, are defined by the joint percentile thresholds of
2 m temperature and precipitation. WDESs, which typically last longer and prevail in non-ice-covered zones, differ
substantially from WWEs, which exhibit shorter durations and exist predominantly in ice-covered regions. Both
WWESs and WDEs are driven by anomalous high-pressure systems (HPs), but they experience distinct local
dynamic processes. By comparing the physical mechanisms for compound warm extremes in Greenland, West
Antarctica, Europe, South China, and the US Great Plains, we conclude that the paradigm differences result from
a combination of attenuation in land-atmosphere interaction and transformation in the dynamic processes
controlled by HPs.

Since the dynamics responsible for the WDEs are consistent with previous studies (Libonati et al., 2022; Miralles
etal., 2014, 2019; Zhang et al., 2023), we specifically focus on WWEs-related local dynamic processes and land-
air interaction created by HPs in ice-covered regions. WWESs over ice sheets are sustained by horizontal warm and
moist air intrusions. When warm air encounters the ice sheet, the surface is directly warmed by longwave ra-
diation, while the air cools down, leading to increased cloud cover. The abundant clouds can trap more longwave
radiation between the surface and the clouds due to their longwave effect but reduce shortwave radiation to the
surface. Simultaneously, more clouds over the ice sheet can lead to more precipitation. These physical processes
are responsible for the high prevalence of WWEs in polar regions. Specifically, the ice cover acts as a barrier that
dampens land-atmosphere interaction, resulting in a relatively shorter duration of WWEs.

An improved understanding of WWESs over polar regions would enable us to make more accurate projections of
climate changes in these regions and assess relative climate risks. Under the background of global climate change,
precipitation during WWESs over the ice sheet tends to change from snowfall to rainfall (Xu et al., 2022). Unlike
snowfall, rainfall can directly infiltrate the ice sheet, leading to enhanced surface melting and potential desta-
bilization (Box et al., 2022; Dou et al., 2023) and posing a larger threat from WWEs to the ice sheet (Bennartz
etal., 2013; Schot et al., 2023; Vignon et al., 2021). In this study, we present the climatological characteristics of
WWESs. However, several important questions remain, including trends and variability of WWESs' characteristics
(i.e., intensity, duration, and spatial extent) and their associated climate impacts, which need to be studied in
future research. Additionally, the duration of WWEs ranges from less than 3 days to more than 15 days, indicating
significant differences among individual cases. Therefore, more attention should be given to the diversity in the
evolution of WWESs. These would be beneficial for making more accurate projections of changes in polar ice
sheets and for taking proactive measures to mitigate the potential consequence on polar ice sheets.

Data Availability Statement

The pressure-levels and single-levels ERAS reanalysis data used in the study are publicly available at Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) via Hersbach et al. (2023a, 2023b), respectively.
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