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ABSTRACT 

Distinguishing anthropogenic warming from natural variability and reducing uncertainty in global-warming 
projections continue to present challenges. Here, we introduce a novel principle-based framework for 
predicting global warming from climate mean states that is based solely on carbon-dioxide-increasing 
scenarios without running climate models and relying on statistical trend analysis. By applying this 
framework to the climate mean state of 1980–20 0 0, we accurately capture the subsequent global warming 
(0.403 K predicted versus 0.414 K observed) and polar warming amplification patterns. Our predictions 
from climate mean states of individual models not only exhibit a high map-correlation ski l l that is 
comparable to that of individual Coupled Model Intercomparison Project Phase 6 models for the observed 
warming, but also capture the temporal pace of their warming under the 1% annual CO2 -increasing 
scenario. This work provides the first principle-based confirmation that anthropogenic greenhouse gases are 
the primary cause of the observed global warming from 1980–20 0 0 to 20 0 0–2020, indepe nde n tly of 
climate models and statistical analysis. 

Keywords: global warming, energy balance, energy gain kernel, non-temperature feedback, total climate 
feedback kernel 
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causes of global warming. However, the inherent 
complexity of these models, coupled with the wide 
range of parameterizations that they depend on, 
introduces uncertainties into their predictions [12 –
16 ]. Different models may yield different estimates 
of future warming [17 ], leaving room for ambiguity 
in our understanding of the climate system. 

Climate sensitivity studies that use the partial ra- 
diative perturbation method [18 –22 ] and the radia- 
tive kernel method [23 ] are thought to hold the 
promise of leading to principle-based predictions 
of global warming from climate mean states. How- 
ever, estimations of climate feedback parameters re- 
quire data from perturbed climate simulations or cli- 
mate trend analysis. Moreover, all existing climate 
feedback analysis frameworks treat the relationships 
of the temperature feedback with external energy 
perturbations and with other (i.e. non-temperature) 
feedback as ‘parallel’ processes, thereby following an 
addition rule in their mathematical expressions. As a 
result, none of the existing climate feedback analysis 
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NTRODUCTION 

arth’s climate system is undergoing profound
hanges and the evidence is unequivocal: the at-
osphere, oceans and land are all warming, driven
y the influence of human activities [1 ,2 ]. The
mpacts of global warming are far-reaching and
ffect ecosystems, economies and the well-being of
ommunities around the world [3 ]. Understanding
he causes and consequences of this warming is
f paramount importance for guiding future cli-
ate policy and adaptation efforts [4 ]. Although
limate change is incontrovertible, discerning the
nderlying drivers of this warming is challenging.
bservational records reveal a world that is growing
armer but teasing apart the contributions of nat-
ral variability and anthropogenic external forcing
emains a complex endeavor [5 –11 ]. Traditional sta-
istical approaches have provided valuable insights,
ut the intricate interplay of various climatic factors
emands more comprehensive methods. Climate

odels have long been employed to investigate the 
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rameworks has yet achieved the capability to predict
lobal warming without running climate models, as
hey at least require the prior information on temper-
ture changes. 
The recent study by Cai et al. [24 ] disentangles

he negative and positive aspects of the tempera-
ure feedback. The negative aspect corresponds to
hermal energy emission perturbations of individ-
al layers, while the positive aspect, represented
y the energy gain kernel (EGK), corresponds to
he amplification of energy perturbations through
adiative thermal coupling within an atmosphere–
urface column. Mathematically, the relationships
f the positive aspect of the temperature feedback
ith external energy perturbations and with other
eedback follow a multiplication rule rather than an
ddition rule. The positive aspect of the temperature
eedback, encapsulated by the EGK, acts to amplify
nergy perturbations at an equal rate (for a given
ocation in observations or in a climate model), re-
ardless of their origins, polarity and amplitude. The
isentangling of the negative and positive aspects
f the temperature feedback rectifies the common
isconception in existing climate feedback studies
hat portray temperature feedback as predominantly
egative. In this study, we devise a principle-based
ramework that allows the adept prediction of global
ean warming and its spatial pattern in response to
nthropogenic greenhouse gases from climate mean
tates without running climate models or statistical
nalysis. Incorporation of the positive aspect of
he temperature feedback as a multiplication rule
s pivotal for predicting global warming without
unning climate models. 

ESULTS 

he total climate feedback kernel 
he novel principle-based framework is built on our
ecent discovery of the EGK associated with temper-
ture feedback. Following [25 ] and [26 ], the per-
urbation energy equation within an atmosphere–
urface column at a given horizontal location is: 

L ∑ 

j=1 

(
∂Ri 

∂Tj 

)
�Tj = �F ( EXT ) 

i +
∑ 

X 

�F ( X ) 
i , 

(1)
here (�F (EXT ) i ) is the vertical profile of exter-
al energy perturbations, with i = 1 correspond-
ng to the top atmospheric layer and i = L the sur-
ace layer, whereas (�F (X ) i ) represents the vertical
rofile of energy perturbations due to changes in a
on-temperature climate variable X in response to
�F (EXT ) i ) ; 

∑ 

X denotes the summation over all
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non-temperature-feedback values, such as water va- 
por and cloud feedback; (�T j ) represents the ver- 
tical profile of equilibrium temperature changes in 
response to external energy perturbations; and the 
matrix ( ∂R i 

∂T j 
) is known as the Planck feedback matrix 

whose j -th column corresponds to the net long-wave 
(LW) radiative cooling rate (denoted by ‘ R ’) due to
1 K of warming at the j -th layer in units of W m−2 K−1 

with both i and j running from 1 for the top layer of
an atmosphere–surface column to L for the surface 
layer. As shown in [24 ], Equation ( 1 ) can be rewrit-
ten as: 

∂Ri 

∂Ti 
�Ti =

L ∑ 

j=1 

Gi, j (1 + λ j, j )�F (EXT ) 
j , (2) 

where ( ∂Ri 
∂Ti 

) is the diagonal matrix of ( ∂Ri 
∂Tj 

) , repre-
senting the increase in the thermal energy emission 
of individual layers due to their warming of 1 K; 
(Gi,j ) = ( ∂Ri 

∂Ti 
)( ∂Ri 

∂Tj 
) 
−1 

is the EGK associated with 
temperature feedback; and (1 + λ j,j ) with λ j,j = ∑ 

X 
�F (X ) 

j 

�F (EXT ) 
j 

is a diagonal matrix, whose diagonal ele- 

ments correspond to the multiplication factors of the 
external energy perturbations by non-temperature 
feedback at individual layers. 

The matrices inside the blue box and the matrices 
on the right and left inside the orange box in Fig. 1 a,
respectively, are representative examples of the ma- 
trices ( ∂Ri 

∂Ti 
) , (Gi,j ) and (1 + λ j,j ) . The first two are

obtained from a radiative transfer model [27 ,28 ] by 
using only the global mean data of 1980–20 0 0 de-
rived from the ERA5 reanalysis [29 ] while the third 
one also uses the data of 20 0 0–2020. It is seen that
elements of the diagonal matrix ( ∂Ri 

∂Ti 
) are all positive, 

representing the increase in the thermal energy emis- 
sion of individual layers in an atmosphere–surface 
column due to their warming of 1 K. The diagonal el-
ements of the EGK are always greater than unity, cor- 
responding to the amplification through the coupled 
atmosphere–surface temperature response to the in- 
put energy perturbations imposed onto individual 
layers. The off-diagonal elements of the EGK are all 
positive, representing the energy gained through the 
coupled atmosphere–surface temperature response 
to the input energy perturbations imposed onto in- 
dividual layers. The strength of the thermal radiation 
absorption effect that is encapsulated in the EGK is 
determined collectively by using the climate mean 
temperature and variables that affect the climate in- 
frared optical thickness, such as water vapor, clouds 
and surface pressure. Readers are referred to [24 ] for
the physics-based derivations of the EGK and more 
elaborate discussions on its physical meanings. 
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a. Nature’s climate feedback “circuit”

Energy input Energy output
Thermal radiative emission

Total climate feedback

Δ

Non-temperature
feedback kernel

Temperature
feedback kernel

LWU + SH + LH
492 W m-2

b. Climate mean energy balance at surface 

Net_SW
168 W m-2 LWD

324 W m-2

Surface

c. Perturbation energy balance at surface

Δ324
168

Surface

ΔLWU

Figure 1. Illustration of nature’s climate feedback ‘circuit’. (a) Illustration of nature’s 
climate feedback ‘circuit’, (b) global mean surface energy balance in the climate mean 
state and (c) perturbation surface energy balance in response to external energy per- 
turbation �Fext . In panel (a), the straight arrow at the top-left, the curved arrows at 
the bottom, and the straight arrow at the top-right represent the external energy input, 
amplified external energy input and energy output from Earth’s climate system, respec- 
tively. The top box represents the thermal radiative emissions of individual layers in an 
atmosphere–surface column and the bottom box corresponds to the total climate feed- 
back kernel, which equals the product of the energy gain kernel of the temperature- 
feedback (matrix on the right) and the non-temperature-feedback kernel (matrix on the 
left). In panel (b), the arrows from the left to the right represent the climate mean to- 
tal solar energy absorbed by the surface, the downward thermal energy emitted from 

the atmosphere and the total energy output from the surface equal to the sum of sur- 
face thermal energy emission and surface sensible and latent heat fluxes, respectively. 
The numbers next to the arrows are their climate mean and global mean values taken 
from Kiehl and Trenberth [31 ]. In panel (c), the compound downward arrow on the left 
and the upward arrow on the right represent the total input energy and thermal emis- 
sion perturbations at the surface, respectively. The strength of the total input energy 
perturbations equals the product of the input energy perturbation ( �Fext ), temperature- 
feedback kernel ( G ) and surface element of the non-temperature-feedback kernel. Both 
�Fext and G can be calculated from the radiative transfer model by using climate mean 
state information. The surface element of the non-temperature-feedback kernel is es- 
timated from the amplification of the climate mean solar energy input at the surface by 
the climate mean greenhouse effect of the atmosphere given in panel (b), whose ob- 
served global mean value is 324/168. In panel (b), LWU, SH, and LH represent upward 
longwave radiative, sensible heat, and latent heat fluxes at surface, respectively. 
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According to Equation ( 2 ), the external input en-
rgy perturbations are subject to two types of feed-
ack amplification and their combined effect obeys a
ultiplication rule rather than addition/subtraction.
he first type is through non-temperature-feedback
rocesses that either enhance the external energy in-
ut perturbations at individual layers (i.e. λ j,j > 0 or
ositive feedback) or reduce the external energy in-
ut perturbations at individual layers (i.e. λ j,j < 0 or
egative feedback). The second type is through the
GK of the temperature feedback. The EGK ampli-
es the original energy input perturbations at indi-
idual layers after their amplification/reduction by
on-temperature feedback. Energy perturbations at
ndividual layers are also transferred to neighboring
ayers through thermal radiative coupling across dif-
erent layers, leading to energy gains at other lay-
rs. We refer to the product of the EGK of the
emperature feedback and non-temperature kernels,
Page 3 of 14
i.e. (Gi,j )(1 + λ j,j ) , as the total climate feedback 
kernel. 

As i l lustrated in Fig. 1 a, the total climate feedback
kernel that is encapsulated in Equation ( 2 ) functions 
in exactly the same way as the first electronic feed-
back circuit that was invented by H.S. Black in 1934
[30 ]. The right-hand side (RHS) of Equation ( 2 ),
or the arrows on the left of the blue box in Fig. 1 a,
represents the total input energy perturbations into 
the climate system after accounting for its amplifica- 
tion by the total climate feedback kernel, while the 
left-hand side (LHS), or the blue arrow, represents 
the thermal radiative emission perturbations of indi- 
vidual layers that are in radiative equilibrium balance 
with the total energy perturbations. Although the 
combined effects of the two types of amplification 
are imprinted by the role of multiplication, the EGK 

serves as the most intrinsic part of the total climate
feedback kernel. In the absence of non-temperature 
feedback, the total climate feedback kernel is sim- 
ply reduced to the EGK of the temperature feed- 
back. The EGK acts to amplify the external input en- 
ergy perturbations at individual layers after their am- 
plification/reduction by non-temperature feedback 
and transfers them into other layers via thermal ra- 
diative coupling between the different layers in an 
atmosphere–surface column. In this sense, the total 
climate feedback kernel is nature’s feedback ‘circuit’ 
within Earth’s climate system. 

It is important to note that there are subtle yet im-
portant differences in the physical meanings of the 
terms in Equation ( 1 ) compared with those in Equa-
tion ( 2 ), even though both sets of terms represent
energy perturbations in units of W m−2 . The LHS 
of Equation ( 1 ) corresponds to the vertical pro-
file of the net LW cooling rate perturbations due to
given changes in temperatures. The vertical summa- 
tion on the LHS of Equation ( 1 ) takes into con-
sideration of the vertical thermal radiative coupling 
of temperature changes in individual layers for the 
net LW cooling rate perturbations. When using cli- 
mate mean temperature changes that are derived 
from climate model simulations or observations, the 
LHS represents the vertical profile of the net LW 

cooling rate perturbations at the instant of climate 
equilblirum, which is in balance with the sum of 
the energy perturbations due to external forcing and 
non-temperature feedback at individual layers indi- 
cated by the RHS of Equation ( 1 ). The equilib-
rium temperature response to each of the energy 
perturbation terms on the RHS of Equation ( 1 ), or
their sum, can be obtained by multiplying the in- 
verse of the Planck feedback matrix by the energy 
perturbation terms. In a linear sense, this equilib- 
rium temperature response, which is derived via the 
inverse of the Planck feedback matrix, is equivalent 
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o the solution that is obtained from climate models
hat adjust temperature solely in response to energy
erturbation terms after a long-term integration (e.g.
 → ∞ ). In terms of the climate feedback concept,
he net LW cooling rate perturbations due to temper-
ture changes correspond to temperature feedback.
learly, solving Equation ( 1 ) does not reveal how
he equilibrium temperature response is achieved.
lthough the final strength of the temperature feed-
ack can be obtained from the product of the Planck
eedback matrix and the equilibrium temperature re-
ponse, the details of the underlying processes asso-
iated with the temperature feedback remain hidden.
n other words, because the prior information about
emperature changes is necessary to determine the
trength of the temperature feedback, the underlying
hysical processes that are associated with tempera-
ure feedback cannot be revealed by using Equation
 1 ). Due to the lack of exciplit or implicit considera-
ion of how the net LW cooling rate perturbations of
ndividual layers at the instant of climate equilblirum
re achieved, Equation ( 1 ) by itself does not have
redictive capability, although it holds the informa-
ion on how temperature changes contribute to the
nergy balance for a perturbed climate state, as in-
icated by the summation of the individual energy
erturbations. 
Compared with Equation ( 1 ), the vertical sum-
ation appears on the RHS of Equation ( 2 ). This
ummation, when it appears on the RHS of the per-
urbation energy equations, takes into consideration
he amplification of given energy perturbations (ex-
ernal or due to non-temperature feedback) by tem-
erature feedback via vertical thermal radiative cou-
ling. Because the EGK is obtained via the inverse
f the Planck feedback matrix, it represents the an-
lytical (linearized) equilibrium solution of climate
odels in response to input energy perturbations,
onsidering only the temperature feedback. The
quilibrium solution that is represented by the EGK
s expressed as the amplification of the input energy
erturbations at the layers where the input energy
s located and gains of energy by other layers rather
han the equilibrium temperature response. The
mplified energy perturbations correspond to the
nd effect of the temperature feedback. It is the ver-
ical thermal radiative coupling due to temperature
eedback that makes the information of the original
nergy perturbations at individual layers propagate
o other layers. The energy propagation between
ndividual layers is mathematically represented by
he vertical summation, accounting for both the
mplification of the original energy perturbations
t individual layers and the energy that is gained
t other layers. Therefore, the EGK contains in-
ormation that elucidates the underlying physical
Page 4 of 14
processes that are associated with temperature feed- 
back. It directly determines the amplification rate of 
the temperature feedback in response to any energy 
perturbations under consideration (external or due 
to non-temperature feedback) without requiring 
prior knowledge of the input energy perturbations 
(i.e. the strength, vertical distribution and sign) 
nor their equilibrium temperature responses. In 
this sense, the EGK retains predictive capability 
for the amplification rate of any given input energy 
perturbations by temperature feedback. 

The RHS of Equation ( 2 ) also indicates that the
relationship of the temperature feedback with the ex- 
ternal energy perturbations and with other feedback 
follows a multiplication rule rather than an addition 
rule and its amplification of the energy perturbations 
occurs at an equal rate (for a given location in obser-
vations or in a climate model), regardless of their ori-
gins, polarity and amplitude. As a result, the pertur- 
bation energy equation written in the form of Equa- 
tion ( 2 ) involves only two terms. One term, given on
the LHS, corresponds to the emission perturbations 
from individual layers, acting as sinks for energy 
perturbations. The other term, given on the RHS, 
represents the amplified energy perturbations due 
to the temperature feedback, with energy perturba- 
tions from non-temperature sources being additive. 
Because the EGK is dervied solely from the climate 
mean state in the absence of external energy pertur- 
bations, one can directly predict the final amplifica- 
tions of any given energy perturbations by the tem- 
perature feedback alone from the RHS of Equation 
( 2 ) without needing to know the actual temperature 
changes that are derived from climate model simu- 
lations or observations. The temperature changes at 
individual layers can then be determined by ensur- 
ing that the emission perturbations from each layer 
balance with the amplified energy perturbations 
at that layer, corresponding to the LHS of Equa- 
tion ( 2 ). Therefore, the rewriting of Equation ( 1 )
as Equation ( 2 ) transforms the perturbation energy 
equation from a diagnostic equation to a prognostic 
equation when energy perturbations are given. 

Principle-based prediction framework 

for global warming 

The EGK can be determined from the climate mean 
states by using a standard radiative transfer model. 
For a given CO2 -increasing scenario, the external en- 
ergy input can also be calculated from climate mean 
states by using the same radiative transfer model (see 
Supplementary Text 1 for the methods). However, 
one cannot directly apply the total climate feedback 
kernel that is i l lustrated in Fig. 1 a to anthropogenic
radiative forcing for predicting global warming 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
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ecause the non-temperature-feedback kernel,
amely (1 + λ j ,j ) , cannot be determined without
unning climate models or using observed trends. 
We have devised a novel approach to trans-

orm Equation ( 2 ) from a partially predictive func-
ion into a fully predictive function for global sur-
ace warming in response to anthropogenic radiative
orcing from climate mean states without prior in-
ormation regarding (1 + λ j,j ) from climate simula-
ions or observations. This transition is achieved by
stimating the strength of the non-temperature feed-
ack at the surface from the climate mean surface en-
rgy balance equation, as i l lustrated in Fig. 1 b and
. Specifically, the CO2 -induced surface temperature
hange �Ts can be determined from: 

�Ts =
ANT 

∑ 

j Gs, j �F ( EXT ) 
j 

4 σT 3 s 
, (3)

here σ is the Stefan–Boltzmann constant, Ts 
s the climate mean surface temperature, Gs,j 
corresponds to the surface elements of the EGK
nd 

∑ 

j Gs, j �F (EXT ) 
j is the surface component of

he amplified external energy perturbation by the
GK of the temperature feedback. In Equation
 3 ), ANT represents the surface element of the
on-temperature-feedback kernel (i.e. the term 1 +
s ) of the diagonal matrix in the bottom left corner
f Fig. 1 a. As indicated in Equations (8)–(12) in
upplementary Text 2, ANT can be estimated from
he climate mean state according to: 

ANT ≈ R 

↓ 
s 

S ↓ s − S ↑ s 
, (4)

here R 

↓ 
s , S 

↓ 
s and S 

↑ 
s are the climate mean down-

ard LW radiative fluxes at the surface and the down-
ard and upward solar energy fluxes at the surface,
espectively. 
In essence, the key step of this new approach

s to extract information on the non-temperature-
eedback kernel at the surface (i.e. ANT ) from the
limate mean surface energy balance equation by
dopting reanalysis or model simulations. In the cli-
ate mean state, the global mean of ANT defined

n Equation ( 4 ) measures the amplification of the net
olar energy input to the surface by the atmospheric
reenhouse effect, as i l lustrated in Fig. 1 b. Such am-
lification varies spatially due to spatial variations in
ater vapor, clouds, ice/snow coverage and energy
ransport convergence/divergence by atmospheric
irculations. Building upon this understanding, we
an consider the external energy input to the surface
hat is amplified by the temperature feedback ( G ×
Fext in Fig. 1 c) for the perturbed climate state to be
Page 5 of 14
equivalent to the net solar energy input (Net_SW in 
Fig. 1 b) to the surface in the climate mean state. Sim-
ilarly, ANT acts as non-temperature feedback to the 
energy input perturbation at the surface for a per- 
turbed climate state, just as it amplifies the total so-
lar energy input at the surface in the climate mean
state. In light of the above, the product of ANT that
is derived from the climate mean state and the exter-
nal energy input amplified by the temperature feed- 
back ( ANT ×G ×�Fext inFig. 1 c) is the total energy 
perturbation at the surface that is initiated by the ex-
ternal energy input. The energy balance between the 
total energy perturbations at the surface and the en- 
hanced thermal emission from the surface ( �LWU 

in Fig. 1 c) determines the global surface warming in
response to increasing CO2 , including its spatial pat- 
tern, as expressed in Equation ( 3 ). 

In Supplementary Text 2, it is de mons trated that 
the ANT that is obtained by using Equation ( 4 ) from
climate mean states is highly correlated ( ∼0.9, Fig.
S1) with the counterparts that are directly diagnosed 
from perturbed climate simulations by using Equa- 
tion (11). Note that the ANT that is obtained by using 
Equation (11) involves actual energy perturbations 
due to the non-temperature feedback for calculating 

λ j,j =
∑ 

X 
�F (X ) 

j 

�F (EXT ) 
j 

, where �F (X ) 
j includes both ra- 

diative energy perturbations due to changes in water 
vapor, clouds and surface albedo, and non-radiative 
energy perturbations due to changes in atmospheric 
convective and advective processes that are derived 
from perturbed climate simulations. Therefore, the 
high correlation between the ANT that is obtained 
from climate mean states and the ANT that is diag- 
nosed from actual energy perturbations due to non- 
temperature feedback directly validates Equation ( 4 ) 
for estimating ANT without running climate models. 

The extraction of the ANT from climate mean 
states rather than from running climate models and 
a reliance on the statistical trend analysis of non- 
temperature-feedback variables, such as clouds, wa- 
ter vapor and ice/snow coverage, enables the transi- 
tion of the feedback circuit, as i l lustrated in Fig. 1 a,
from a diagnostic tool into a prediction tool for 
global warming. The global mean value of ANT is 
well recognized in introductory climate textbooks 
for i l lustrating the greenhouse effect of Earth’s cli-
mate system and its spatial pattern can be easily de-
termined from climate mean states. Despite its famil- 
iarity and easy access, the true significance and role
of ANT in retaining crucial information about surface 
energy amplification by non-temperature feedback 
for predicting the response of global warming to ex- 
ternal energy perturbations remained unknown un- 
til our findings. In essence, we utilize the ANT that 
is derived from the climate mean state to infer the

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
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Figure 2. Prediction of observed global warming from the 1980–2000 mean state. Maps of (a) multiplication factor by non-temperature feedback ( ANT ) 
derived from the 1980–2000 time mean state (dimensionless), (b) external energy perturbations at the surface (W m−2 ) determined from the observed 
increase in the CO2 concentration from 1980–2000 to 2000–2020, (c) amplified external energy perturbations at the surface (W m−2 ) through the energy 
gain kernel of the temperature feedback, (d) predicted global warming (K), (e) the observed warming (K) and (f) the difference between panels (e) and 
(d). The numbers inside ‘()’ in the title are their global mean values. 
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ultiplication factor of external energy perturba-
ions at the surface by using non-temperature feed-
ack for a perturbed climate state. 

rediction of observed global warming 

rom 1980–2000 to 2000–2020 
e calculate the ANT according to Equation ( 4 ) by
sing the 1980–20 0 0 mean data that were derived
rom the ERA5 reanalysis [29 ]. Figure 2 a reveals sig-
ificant spatial variation in the observation-derived
NT , which varies from generally low values in
he tropics, with the lowest possible value close
o 1 in the eastern Pacific cold tongue region, to
otably much higher values of > 9 in polar regions.
he smaller values of ANT in the tropics reflect the
artial cancellation of strong positive water vapor
eedback, net negative cloud short-wave (SW) and
W feedback, and strong negative feedback due to
urface evaporation, vertical convective processes
nd energy flux divergence that is associated with
tmospheric poleward energy transport [32 –34 ].
he much larger values of ANT at high latitudes
eflect both the dominance of positive feedback pro-
esses, such as water vapor, ice-albedo and LW cloud
eedback, plus the energy flux convergence that is
ssociated with poleward atmospheric energy trans-
ort and the lack of negative feedback processes,
uch as SW cloud feedback and vertical convections
Page 6 of 14
[32 ,35 ,36 ]. The dominance of positive feedback 
over high latitudes explains the meridionally de- 
creasing profile of the ratio of downward LW fluxes 
to the net solar energy fluxes at the surface. Eastern 
Antarctica, with its higher elevation, exhibits both 
lower surface pressure and colder temperatures. 
Their combined effect is a drier atmosphere with 
fewer clouds, resulting in smaller ANT values than 
those over Western Antarctica. 

We use the radiative transfer model to compute 
the external radiative forcing at the surface based on 
the observed increase in CO2 concentrations from 

352.2 ppm in 1980–20 0 0 to 385 ppm in 20 0 0–
2020 (Fig. 2 b) and its amplification through the 
EGK of the temperature feedback (Fig. 2 c). The spa- 
tial pattern of the CO2 -induced radiative forcing at 
the surface is largely shaped by the scarcity of cli- 
mate mean moisture in the atmosphere. For the same 
increase in the CO2 concentration, the percentage 
change in the atmospheric opacity is greater over re- 
gions where atmospheric moisture is scarce, such as 
highly elevated areas, cold places and deserts, result- 
ing in stronger external radiative forcing at the sur- 
face [37 –39 ]. The EGK serves to amplify the exter-
nal energy perturbations at the surface and transfer 
the external energy perturbations in the atmosphere 
to the surface layer through temperature feedback, 
as depicted in Fig. 1 a. Over the regions where at-
mospheric moisture is scarce, the relatively strong 
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ositive external energy perturbations at the surface
re suppressed through temperature feedback. In
egions where climate mean atmospheric moisture
nd/or low-level clouds are abundant, the vertical
xtent of the positive external energy perturbations
hat are induced by increasing CO2 extends from
he surface [37 ,39 ]. As a result, the temperature-
eedback-amplified CO2 -induced energy perturba-
ions at the surface tend to be more pronounced in
egions where climate mean atmospheric moisture
nd/or low-level clouds are abundant, such as the
outhern Ocean; the west coasts of California, Peru
nd Chile; and the Arctic Ocean. In addition to these
egions, the values of the EGK are also greater over
laces where the climate mean temperature is high,
uch as the Sahara Desert, resulting in a stronger am-
lification of CO2 -induced radiative forcing. Overall,
he positive temperature-feedback loop through the
hermal radiative coupling of the atmosphere surface
lays a critical role in amplifying the CO2 -induced
adiative forcing at the surface, increasing it 6.6-fold
rom a global mean value of 0.13 to 0.86 W m−2 . 
Page 7 of 14
The product of panels (a) and (c) of Fig. 2 ,
divided by the Stefan–Boltzmann feedback param- 
eter (i.e. 4 σT 3 s ), yields our predictions for the sur-
face temperature changes from 1980–20 0 0 to 20 0 0–
2020 (Fig. 2 d). Our predicted global warming is 
solely attributed to CO2 -induced radiative forcing 
and its amplification by the product of the EGK of
the temperature feedback and the non-temperature 
feedback. A comparison of Fig. 2 d with Fig. 2 e re-
veals that our prediction nearly perfectly reproduces 
the observed global mean warming (0.403 K com- 
pared with the observed 0.414 K). Our prediction 
of the observed global mean warming compares 
favorably to the predictions by 18 CMIP6 (Cou- 
pled Model Intercomparison Project Phase 6; see 
Table S1 for a list of these models) historical simu- 
lations [40 ]. As shown in Fig. 3 a, the global mean
warming from 1980–1994 to 20 0 0–2014 that was 
captured by the ensemble-mean CMIP6 historical 
simulation is 0.516 K, with a median global mean 
warming of 0.526 K. The observed warming from 

1980–1994 to 20 0 0–2014 is 0.332 K. Therefore, our

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
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Figure 4. Prediction of global warming from the CMIP6 ensemble-mean pre-industrial climate state. Maps of (a) multiplication factor by non-temperature 
feedback ( ANT ) derived from the pre-industrial mean state of the CMIP6 models ensemble mean (dimensionless), (b) external energy perturbations at 
the surface (W m−2 ) under the abrupt 4 × CO2 scenario, (c) amplified external energy perturbations at the surface (W m−2 ) through the energy gain 
kernel of the temperature feedback, (d) predicted global warming (K), (e) the CMIP6 models ensemble-mean warming projection under the 4 × CO2 

scenario (K) and (f) the difference between panels (e) and (d). The numbers inside ‘()’ in the title are their global mean values. 
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rediction has a much smaller error in terms of the
lobal mean warming. In terms of spatial patterns,
he predicted warming exhibits amplified warming
ver the Arctic and along the coastal areas of Green-
and and the Antarctic continent, with generally
eaker warming over tropical latitudes, indicating an
vident resemblance to their observational counter-
arts (Fig. 2 e). 

eproduction of climate model 
lobal-warming projections 
o further assess the prediction ability of the
rinciple-based framework, we made global-
arming predictions from pre-industrial climate
ean states that were simulated by each of the 18
MIP6 models. The spatial pattern of the ANT that
s derived from the ensemble-mean pre-industrial
limate state of these 18 models (Fig. 4 a) is quite
omparable to that of their observational counter-
arts (Fig. 2 a), except that its global mean is ∼10%
eaker (2.2 versus 2.4). The spatial patterns of the
O2 -induced direct radiative forcing (Fig. 4 b) and
ts amplification by temperature feedback (Fig. 4 c)
re also very close to their observed counterparts,
s shown in Fig. 2 , except for the much larger
 ∼14.5 times) values, which is expected from the
uadrupling of CO2 (4 × CO2 ) instead of the 9%
Page 8 of 14
increase in CO2 . In particular, the global mean 
amplification rate of CO2 -induced radiative forc- 
ing by temperature feedback (12.4/1.9 = 6.5) is 
nearly identical to that of its observational counter- 
part (0.87/0.13 = 6.7). Our predictions from the 
pre-industrial mean climate state (Fig. 4 d) closely 
capture the original ensemble-mean warming pro- 
jection of CMIP6 models (Fig. 4 e) under the abrupt 
4 × CO2 scenario, which is ∼0.4 K weaker than the 
ensemble-mean warming of CMIP6 models (5.1 
versus 5.5 K). The new approach can also predict 
the temporal evolution of climate response to a 
temporally evolving increase in CO2 . As i l lustrated 
in Fig. 3 b, our global-warming prediction (red line) 
captures the temporal pace of the original ensemble- 
mean warming projection from the CMIP6 models 
under the 1% annual CO2 increase scenario (blue 
line). Since our prediction is based on climate equi- 
librium states, a delay of 10 years (magenta line) 
or longer of CMIP6 model simulations from our 
predictions is expected. 

The results of the warming projections of in- 
dividual CMIP6 models and our predictions from 

their pre-industrial climate mean states are given in 
Figs S2–S6 for the abrupt 4 × CO2 scenario and in 
Fig. S7 for the 1% annual CO2 increase scenario. The 
box-and-whisker plots (Fig. 3 c) show that our global 
mean warming predictions capture the median value 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
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f the CMIP6 projections nearly exactly. The nor-
alized mean absolute differences (NMAD) be-
ween our global mean predictions and the CMIP6
rojections are < 20% of the model ensemble-mean
arming (see the definition of NMAD in Equation
7) of Text S1 and the values of NMAD shown in
able S1). This is noticeably smaller than the global
ean error of the ensemble mean of the CMIP6
istorical simulations for the observed global warm-
ng ( ∼57% = (0.52 −0.33)/0.33, Fig. 3 a). Further-
ore, the inter-model spread of our global mean
arming predictions is noticeably smaller and tends
o be less dependent on the strength of the exter-
al forcing compared with the CMIP6 projections.
his suggests that a significant part of the CMIP6
nter-model spread is due to the inter-model spreads
f non-temperature feedback rather than the inter-
odel spread of their climate mean states. 

ceanic response to CO2 forcing 

y design, our global-warming prediction captures
nly the surface temperature response to exter-
al energy perturbations, with temperature and
on-temperature feedback in atmosphere–surface
olumns taken into consideration. Therefore, dif-
erences between the observed or simulated warm-
ng and our predictions may be regarded as oceanic
esponses to external forcings plus internal climate
ariability. Figure 2 f shows that the difference be-
ween the observed trends from 1980–20 0 0 to
0 0 0–2020 a nd our prediction is dominated by sig-
als from the negative phase of the Pacific Decadal
sci l lation (PDO) mode [9 ,41 ] and the oceanic re-
ponse to CO2 -induced radiative forcing. The lat-
er is evident from the general weak cooling over
he Arctic Ocean and North Atlantic Ocean and the
eak warming over the South Atlantic Ocean, indi-
ating the weakening trend of the Atlantic Merid-
onal Overturning Circulation (AMOC) in response
o CO2 -induced radiative forcing [42 ,43 ]. Addition-
lly, the general cooling over the Southern Ocean
urrounding the Antarctic continent shelf is indica-
ive of stronger oceanic upwelling along the Antarc-
ic circumpolar current (ACC) in response to CO2 
orcing [44 ]. 
The differences between the CMIP6 projections

nd our predictions (Fig. 4 f, Figs S8A–R and S9A–
) reveal that all CMIP6 models can capture the ob-
erved strengthening response of oceanic upwelling
ver the Southern Oceans and the weakening of
MOC in response to increasing CO2 [45 ], albeit
 ith vary ing degrees of strength. The map correla-
ion between Fig. 4 f and Fig. 2 f over the Southern
cean is as high as 0.63 and that between each of
ig. S8A–R (or Fig. S9A–R) a nd Fi g. 2 f ranges
Page 9 of 14
from 0.32 to 0.68 (not shown here), confirming 
that all CMIP6 models capture the observed cool- 
ing response of the Southern Ocean to CO2 forc- 
ing. In addition to the cooling response of the 
Southern Ocean, all CMIP6 model simulations 
also show a strengthening response of El Niño 
events in their global-warming projections [46 ]. The 
strengthening response of El Niño events in indi- 
vidual CMIP6 models is positively correlated (0.41) 
with the surface temperature response along the 
ACC ( Fig. S10C), indicating that models with a 
stronger El Niño response would also experience a 
weaker upwelling response along the ACC [47 ]. The 
inter-model spread of the strengthening response of 
El Niño contributes to the inter-model spread of 
the CMIP6 global-warming projections ( Fig. S10A), 
as does the inter-model spread of the strengthen- 
ing response of the oceanic upwelling along the 
ACC ( Fig. S10B). The presence of these two distinct 
oceanic responses to abrupt changes of 4 × CO2 
in the CMIP6 models explains most of the differ- 
ences (86.5%) in the global-warming projections of 
the CMIP6 models from our predictions (Fig. 3 d). 

Skill comparison of our predictions with 

CMIP6 historical simulations 
Aside from excluding the oceanic response to CO2 
forcing in our prediction, our results noticeably 
underestimate warming over land but overestimate 
warming of the Arctic Ocean (Figs 2 f, 4 f and Fig. S9). 
Figure 5 reveals that, in addition to overestimating 
the observed global mean warming, the CMIP6 
historical simulations also tend to overestimate the 
warming over the Arctic Ocean. However, they do 
not show a systematic underestimation of warming 
over land. The global mean absolute error of our 
prediction for the observed warming is ∼0.30 K, 
which is comparable to the values from the CMIP6 
historical simulations, which range from 0.30 
to 0.46 K. 

To further compare our prediction ski l l with 
those of CMIP6, we first obtain map-correlation 
ski l ls of the CMIP6 historical simulations for the
observed warming. It is seen from Fig. 6 a that the
map-correlation ski l ls of individual CMIP6 histori- 
cal simulations with the observed warming obtained 
by using Equation (6a) range from 0.57 to 0.75, all
of which are below the ski l l of their ensemble-mean
simulation (0.78). Despite only considering the ob- 
served changes in the CO2 concentration level, the 
map-correlation ski l l of our warming predictions 
against the observed warming is also as high as 0.69.
The map-correlation ski l ls of our predictions for 
warming in response to the quadrupling of CO2 
with their original warming projections under the 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
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brupt 4 × CO2 scenario range from 0.81 to 0.91
Fig. 6 b). Such high positive map-correlation ski l ls of
ur warming predictions are noticeably better than
hose of climate models for the observed warming
Fig. 6 a). Recall that our predictions of the CMIP6
arming projections utilize the same external forc-
ng information as that used for the CMIP6 warm-
ng projections (i.e. the quadrupling of CO2 ). Simi-
arly, CMIP6 historical simulations for the observed
arming include all observed external forcings, such
s solar variability, volcanic aerosols and anthro-
ogenic greenhouse gases and aerosols, as well as in-
ernal climate variability [48 ]. Therefore, our predic-
ion ski l l of warming is highly comparable to those of
MIP6 when the external forcing information is ad-
quately considered. 
However, our predictions do not seem to cap-

ure the spatial variability of the observed warming
ery well, as indicated by a low map-correlation ski l l
0.31) when the global mean warming is removed ac-
ording to Equation (6b) in Supplementary Text 2.
his is considerably lower than the counterparts
hat are derived from the historical simulations
f CMIP6 models, which are all in the range of
.42–0.6 except for one model with a ski l l of 0.28.
he underperformance of our prediction for the spa-
Page 10 of 14
tial variability of the observed surface temperature 
changes can be largely attributed to the exclusion 
of volcanic/anthropogenic aerosols and internal cli- 
mate variability in our predictions. This is evident 
from the comparable ski l l of our predictions for the
spatial variability of warming projections that were 
made by individual climate models that were forced 
solely by CO2 changes, which mostly ranges from 

0.42 to 0.61, except for two predictions with map- 
correlation ski l ls of 0.36 and 0.28, when the global
means are removed. Therefore, our prediction ski l l 
for the spatial variability of global warming is also 
highly comparable to that of CMIP6 when the exter- 
nal forcing information is adequately considered. 

DISCUSSION 

In this study, we devise a novel principle-based 
framework for predicting global warming in re- 
sponse to external forcings imposed on Earth’s 
climate state from the climate mean state. Our 
predictions only consider the temperature and 
non-temperature feedback in atmosphere–surface 
columns, excluding the oceanic response to exter- 
nal energy perturbations. Amplification through 
the EGK of the temperature feedback results in a 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae442#supplementary-data
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Figure 6. Map-correlation skill of warming predictions. (a) Predictions by individual 
CMIP6 historical simulations against the observed warming, (b) our predictions of 
warming in response to the quadrupling of CO2 against individual CMIP6 warming pro- 
jections under the abrupt 4 × CO2 scenario. To ensure an equal-area representation of 
all grid points when calculating correlations, we divide Earth’s surface into 2000 equal- 
area grid points. The numbers at the top of the bars correspond to the map-correlation 
skills including their global mean values, as given in Equation (6a), while the numbers 
below correspond to the map-correlation skills with their global mean values removed, 
as given in Equation (6b). 
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.6-fold increase in the global mean of CO2 -induced
nergy perturbations at the surface, while non-
emperature feedback contributes to an additional
-fold amplification. By accurately accounting for
emperature- and non-temperature-feedback ampli-
Page 11 of 14
fications based on the climate mean state, we can 
predict global warming under any CO2 -increasing 
scenario, including observed scenarios, without the 
need to run climate models. 

Unlike the temperature kernel, which necessi- 
tates prior information on air temperature changes 
to calculate the amplification to external energy per- 
turbations, as is commonly done in the literature 
(see e.g. Zeppetello et al. [49 ]), the EGK of the
temperature feedback allows direct calculations of 
this amplification without the need to run climate 
models. The key assumption that is invoked in the 
principle-based framework is that the multiplica- 
tion factor of the external energy perturbations at 
the surface by non-temperature feedback in a per- 
turbed climate state, which is referred to as ANT , is
equivalent to the energy amplification by the down- 
ward LW radiation that is emitted from the atmo- 
sphere to surface absorption of the solar energy in 
the climate mean state. Essential ly, we uti lize the
ANT that is derived from the climate mean state to 
estimate how non-temperature feedback amplifies 
the external energy perturbations at the surface in 
a perturbed climate state, eliminating the need to 
run models. We have demonstrated a strong cor- 
relation ( ∼0.9) between the estimated ANT that is 
derived from climate mean states and the ANT that 
is diagnosed from actual energy perturbations due 
to non-temperature feedback. This validation sup- 
ports our approach of estimating the ANT from cli- 
mate mean states without the need to run climate 
models. 

We assess the prediction capability of the 
principle-based framework under different con- 
figurations, including the observed warming and 
global-warming projections by 18 individual CMIP6 
models under both the abrupt quadrupling of in- 
creasing CO2 and the 1% annual increase in CO2 
scenarios. Our predictions closely match the ob- 
served global mean warming from 1980–20 0 0 to 
20 0 0–2020 (0.40 3 K predicted vs. 0.414 K ob-
served). In comparison, the global mean warming 
that was captured by the ensemble-mean CMIP6 
historical simulation is 0.516 K, with a median 
global mean warming of 0.526 K. The mean ab- 
solute difference between our predictions and the 
CMIP6 projections is < 20% of the ensemble-mean 
global-warming projection, which is less than the 
counterpart CMIP6 historical simulations for the 
observed global warming ( ∼57%). The global mean 
absolute error of our prediction for the observed 
warming ( ∼0.30 K) is comparable to those of 
CMIP6 historical simulations (0.30 −0.46 K). The 
map-correlation ski l l of our reproduction of the 
CMIP6 warming projections ranges from 0.81 to 
0.91; they are mostly between 0.4 and 0.6, even 
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ith the global mean warming removed. This
evel of correlation is highly comparable to that
f individual CMIP6 models for the observed
arming. In comparison with the CMIP6 histori-
al simulations, the main error in our predictions,
xcluding the oceanic response to CO2 forcing, is
he systematic underestimation of warming over
and. 
Our results indicate that the global mean dif-

erence between the observed trends from 1980–
0 0 0 to 20 0 0–2020 a nd our prediction is very
lose to zero. This implies that the residual ef-
ects of the negative phase of the PDO that caused
he global-warming hiatus in 20 0 0–2010, along
ith the strengthening response of oceanic up-
elling over the Southern Oceans and the weak-
ning of the AMOC, made minimal contributions
o the overall global warming that was observed
rom 1980–20 0 0 to 20 0 0–2020. The refore, the
O2 increase, and not natural variability, was the
ain factor that was responsible for the observed
arming trends from 1980–20 0 0 to 20 0 0–2020.
early 80% of the CMIP6 global mean warming
rojections are attributed to the direct response
o the abrupt 4 × CO2 amplification through
emperature- and non-temperature-feedback pro-
esses within atmosphere–surface columns. The re-
aining 20% are attributed to the oceanic response.
ur identification of anthropogenic forcing as the
rimary cause of the observed global warming is
rinciple-based, marking it as the first determination
f the cause of global warming without reliance on
limate models and statistical analysis. 
Aside from excluding the oceanic response to

O2 forcing, the primary limitation of the new
ramework for predicting global warming lies in the
pproximation of the additional multiplication fac-
or from non-temperature feedback (i.e. ANT ) for the
mplified surface external energy perturbations by
emperature feedback. It is assumed that the ANT 
an be inferred from the energy amplification by the
ownward LW radiation that is emitted from the at-
osphere to surface absorption of the solar energy in
he climate mean state. This approximation may be
naccurate unless the amplified surface external en-
rgy perturbations by temperature feedback exhibit
 similar global scale pattern to the surface absorp-
ion of the solar energy in the climate mean state. As
 l lustrated in Fig. S11, the amplified CO2 -induced en-
rgy perturbations at the surface do exhibit a simi-
ar global scale pattern to the surface absorption of
he solar energy in the climate mean state. Likewise,
he ANT that is derived from the mean climate state
hows a comparable pattern to the actual ANT that
s derived from perturbed climate simulations. This
xplains why our predictions demonstrate compara-
Page 12 of 14
ble ski l l to those of climate models for CO2 -induced 
global warming. However, our prediction may not 
be ski l lful when external forcing has a distinct spa-
tial pattern that bears little resemblance to the sur- 
face absorption of solar energy in the climate mean 
state. For instance, in cases of negative external forc- 
ing due to decreasing CO2 or solar radiation man- 
agement geoengineering [50 ], the new prediction 
framework would not accurately predict the resul- 
tant global cooling. This is because the mean state 
energy balance equation lacks information regard- 
ing the multiplication factor from non-temperature 
feedback in response to negative surface energy per- 
turbations. Moreover, the new prediction framework 
can only predict the equilibrium response of the sur- 
face temperature to external forcing. As a result, it 
cannot capture the internal variability response to ex- 
ternal forcing and potential tipping points that could 
trigger abrupt climate changes due to non-linear in- 
teractions of temperature and non-temperature feed- 
back. 

DATA AVAILABILITY 

The data used for this study can be downloaded from: ERA5
monthly mean 3D data at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-
means?tab=form, ERA5 monthly mean surface data at 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels-monthly-means?tab=form and the CMIP6 
model data at https://esgf-node.llnl.gov/search/cmip6/. 

CODE AVAILABILITY 

The FORTRAN codes for running the radiation transfer model 
and calculating the EGK and external radiative forcing, plus the 
MATLAB scripts for calculating our global-warming predictions 
and plotting the results, can be available upon request. 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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