Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years

Jingfeng Xiaoa,⁎, Frederic Chevallierb, Cecile Gomezc, Luis Guanterd, Jeffrey A. Hicke,e, Alfredo R. Huetef, Kazuhiito Ichii, Wenjian Nih, Yong Pangi, Abdullah F. Rahmant, Guoqing Sunk, Wenping Yuanl, Li Zhangm, Xiaoyang Zhangn

a Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
b Laboratoire des Sciences du Climat et de l’Environnement, CEA, CNRS, UVSQ/IPSL, Université Paris-Saclay, France
c LISAH, Univ Montpellier, IRD, INRA, SupAgro, F-34060 Montpellier, France
d Centro de Tecnologías Físicas, Universitat Politècnica de València, Carretera de Vera s/n, 46022 València, Spain
e Department of Geography, University of Idaho, Moscow, ID 83844, USA
f School of Life Sciences, University of Technology Sydney, NSW 2007, Australia
g Center for Environmental Remote Sensing, Chiba University, Chiba, 263-8522, Japan
h State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
i Institute of Forest Resource Information Technique, Chinese Academy of Forestry, Beijing 100091, China
j Coastal Studies Lab, University of Texas Rio Grande Valley, TX 78597, USA
k Department of Geographical Sciences, University of Maryland, College Park, MD 20740, USA
l School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangzhou 519082, China
m Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences, Beijing 100094, China
n Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA

ARTICLE INFO
Edited by Jing M. Chen
Keywords:
Carbon fluxes
Carbon stocks
Optical remote sensing
Microwave remote sensing
Lidar
Solar-induced chlorophyll fluorescence
Carbon cycling
Aboveground biomass
Disturbance
Carbon-climate feedbacks

ABSTRACT
Quantifying ecosystem carbon fluxes and stocks is essential for better understanding the global carbon cycle and improving projections of the carbon-climate feedbacks. Remote sensing has played a vital role in this endeavor during the last five decades by quantifying carbon fluxes and stocks. The availability of satellite observations of the land surface since the 1970s, particularly the early 1980s, has made it feasible to quantify ecosystem carbon fluxes and stocks at regional to global scales. Here we provide a review of the advances in remote sensing of the terrestrial carbon cycle from the early 1970s to present. First, we present an overview of the terrestrial carbon cycle and remote sensing of carbon fluxes and/or stocks. Second, we provide a historical overview of the key milestones in remote sensing of the terrestrial carbon cycle. Third, we review the platforms/sensors, methods, findings, and challenges in remote sensing of carbon fluxes. The remote sensing data and techniques used to quantify carbon fluxes include vegetation indices, light use efficiency models, terrestrial biosphere models, data-driven (or machine learning) approaches, solar-induced chlorophyll fluorescence (SIF), land surface temperature, and atmospheric inversions. Fourth, we review the platforms/sensors, methods, findings, and challenges in passive optical, microwave, and lidar remote sensing of biomass carbon stocks as well as remote sensing of soil organic carbon. Fifth, we review the progresses in remote sensing of disturbance impacts on the carbon cycle. Sixth, we also discuss the uncertainty and validation of the resulting carbon flux and stock estimates. Finally, we offer a forward-looking perspective and insights for future research and directions in remote sensing of the terrestrial carbon cycle. Remote sensing is anticipated to play an increasingly important role in carbon cycling studies in the future. This comprehensive and insightful review on 50 years of remote sensing of the terrestrial carbon cycle is timely and valuable and can benefit scientists in various research communities (e.g., carbon cycle, remote sensing, climate change, ecology) and inform ecosystem and carbon management, carbon-climate projections, and climate policymaking.

⁎ Corresponding author.
E-mail address: j.xiao@unh.edu (J. Xiao).

https://doi.org/10.1016/j.rse.2019.111383
Received 9 January 2019; Received in revised form 10 August 2019; Accepted 20 August 2019

0034-4257/ © 2019 Elsevier Inc. All rights reserved.
1. Introduction

Terrestrial ecosystems “breathe” in carbon dioxide (CO₂) through photosynthesis and release carbon (C) into the atmosphere through respiration and therefore play an important role in the global C cycle and the Earth’s climate (Schimel, 1995). The terrestrial C cycle has received tremendous attention from the research community during the last several decades. Remote sensing has been widely used to study the terrestrial C cycle by quantifying ecosystem C fluxes and stocks (e.g., Running et al., 2004; Saatchi et al., 2011; Xiao et al., 2014a) and examining the impacts of global change on C dynamics (e.g., Nemani et al., 2003; Smith et al., 2016; Li et al., 2018a) and the feedbacks to the climate (e.g., Ollinger et al., 2008; Xiao, 2014). The availability of satellite observations of the land surface since the 1970s, particularly from the early 1980s, has made it feasible to assess the magnitude, spatial patterns, interannual variability, and long-term trends of ecosystem C dynamics at landscape, regional, and global scales.

Ecosystem C fluxes have been widely measured or quantified using remotely sensed data. For example, satellite-derived vegetation indices (VIs) (e.g., normalized difference vegetation index or NDVI, enhanced vegetation index or EVI) are traditionally used to approximate or estimate gross primary production (GPP) (e.g., Zhou et al., 2001; Xiao and Moody, 2004; Rahman et al., 2005), and are also used in light use efficiency (LUE) models for quantifying GPP and net primary production (NPP) (Potter et al., 1993; Running et al., 2004). The recent advent of solar-induced chlorophyll fluorescence (SIF) has offered an innovative and independent approach for estimating GPP (Frankenberg et al., 2011; Joiner et al., 2011; Li et al., 2018b). In addition, satellite-derived land surface temperature (LST) has also been used to quantify ecosystem respiration (ER) (e.g., Rahman et al., 2005). Moreover, the measurement of atmospheric column CO₂ concentrations from the Greenhouse gases Observing SATellite (GOSAT) and the Orbiting Carbon Observatory-2 (OCO-2) allows the estimation of net biome production (NBP) (R Lund et al., 2015). Besides directly quantifying C fluxes, remote sensing has also been used to estimate leaf area index (LAI) that is in turn used to prescribe LAI in diagnostic ecosystem models (Liu, Xiao, et al., 2018) or to be assimilated into prognostic models (Hazarika et al., 2005) for simulating ecosystem C fluxes.

Both optical and microwave remote sensing data have been used to quantify and monitor biomass C stocks during the last few decades. For example, surface reflectance and VIs derived from optical sensors have been used to quantify aboveground biomass (AGB) using empirical models (Myneni et al., 2001; Zhang and Kondragunta, 2006) and machine learning approaches (John et al., 2018). Active microwave remote sensing has been widely used to estimate AGB since the early 1990s (Le Toan et al., 1992; Ni et al., 2016). Lidar (light detection and ranging) has emerged as an effective technique for quantifying AGB for forests and other ecosystems and has been increasingly used over the last two decades (Lefsky et al., 1999, 2005). Besides biomass C stocks, soil organic C (SOC) has also been estimated from remotely sensed data using empirical or machine learning approaches (Gomez et al., 2008; Mishra et al., 2010; Chen, Chang, Xiao, et al., 2019).

During the last five decades, a number of airborne and satellite sensors have observed the Earth’s land surface, and a wide variety of techniques have been developed to quantify C fluxes and stocks using remotely sensed data. Several previous studies have reviewed the remote sensing of C fluxes or stocks (e.g., Roughgarden et al., 1991; Hilker et al., 2008; Ladoni et al., 2010; Goetz and Dubayah, 2011; Schimel et al., 2015; Ryu et al., 2019). For example, Hilker et al. (2008) reviewed the status and future directions of simulating GPP via the use of remote sensing in LUE models. Turner et al. (2004) reviewed the integration of remotely sensed data (e.g., vegetation type, stand age, biomass, phenology, LAI, and tree height) with ecosystem process models for regional assessment of C fluxes. Ladoni et al. (2010) reviewed the potential and limitations of remotely sensed data for mapping SOC. A more recent study reviewed the progress in photosynthesis research based on remote sensing (Ryu et al., 2019). Despite these review and overview efforts, to our knowledge, no study has systematically reviewed the remote sensing of the terrestrial C cycle over the last 50 years. Moreover, the last decade has witnessed more rapid advances in remote sensing and its extensive use for quantifying C fluxes and stocks. A comprehensive review on the history and advances in remote sensing of the terrestrial C cycle over the 50 years will be timely and valuable.

Here we provide a review on 50 years of advances in remote sensing of the terrestrial C cycle. We conducted a comprehensive review of the achievements, challenges, and opportunities of remote sensing science and technology in terrestrial C cycle studies from the 1970s to present. Section 2 presents an overview of the terrestrial C cycle and remote sensing of C fluxes and stocks based on a broad wavelength region (visible, infrared, and microwave) on the electromagnetic spectrum. In Section 3, we provide a historical overview of the main milestones in remote sensing of the terrestrial C cycle. In Section 4, we review the platforms/sensors, methods, achievements, and challenges for quantifying ecosystem C fluxes. The remotely sensed data and techniques used for quantifying C fluxes include vegetation indices, LUE models, terrestrial biosphere models, data-driven (or machine learning) approaches, SIF, LST, and atmospheric inversions. In Section 5, we review the platforms/sensors, methods, achievements, and challenges in passive optical, microwave, and lidar remote sensing of biomass C stocks and also in remote sensing of C stocks in soils. In Section 6, we review the methods and challenges for assessing the impacts of disturbances on the terrestrial C cycle. In Section 7, we discuss the uncertainty and validation of the resulting C fluxes and stock estimates. Finally, we offer a forward looking perspective and insights for future research and directions in the terrestrial C cycle area of environmental remote sensing in Section 8.

2. Overview of the terrestrial carbon cycle and remote sensing

The terrestrial C cycle encompasses the exchange of C among the terrestrial biosphere, pedosphere, geosphere, and atmosphere of the Earth. Plants absorb C from the atmosphere through photosynthesis and store the C in biomass (leaves, branches, trunks, and roots). GPP, the amount of C fixed by terrestrial ecosystems through photosynthesis, constitutes the largest C flux between the terrestrial biosphere and the atmosphere. GPP is the basis for the production of food, wood, and fiber, and therefore has important implications for human welfare. A part of the C absorbed is returned to the atmosphere through plant respiration (i.e., autotrophic respiration), and the difference between GPP and autotrophic respiration is termed as NPP. Litterfall, plant materials that fall to the ground (leaves, branches, flowers, and fruits), contributes to the buildup of the soil C pool. The C input from litterfall and root mortality/exudation and the C release from decomposition (i.e., heterotrophic respiration) determine the size of the SOC pool (Liu et al., 2011). GPP along with ER, the sum of autotrophic and heterotrophic respiration, determine the net ecosystem production (NEP). Other processes such as deforestation, harvest, and fire can also lead to the loss of C, and the net ecosystem C balance is NBP. Disturbances are critical ecosystem processes that influence C cycle dynamics. Direct emissions from one disturbance type, wildfire, transfer C from ecosystems to the atmosphere immediately (while burning). Major impacts to GPP and respiration can occur following fires as well as other disturbance types, which include natural disturbances (insect and disease outbreaks, drought, and severe storms) and harvesting, and these impacts can last for decades as ecosystems recover (Odum, 1969). The C fluxes and stocks that are quantified using remote sensing data and methods are illustrated in Fig. 1. Better understanding the terrestrial C cycle has important implications for climate projections. Remote sensing has played a critical role in quantifying C fluxes (e.g., GPP, NPP, ER, NEP, NBP) (Running et al., 2004; Xiao et al., 2011a) and stocks (biomass and SOC) (Saatchi et al., 2011) at various spatial and temporal
scales during the last five decades.

Ecosystem C fluxes and stocks are quantified with remotely sensed data acquired in the broad wavelength range of the electromagnetic spectrum from visible light to microwave (Fig. 2). Ecosystem C flux components (e.g., GPP, NPP, ER, NEP, and NBP) are typically estimated using optical remote sensing data acquired in the visible, near-infrared (NIR), and shortwave infrared (SWIR) wavelength. ER can also be estimated using LST observations from the thermal infrared (TIR) wavelength (Rahman et al., 2005; Kimball et al., 2009). Satellite-derived VIs (Rahman et al., 2005), LUE models (Running et al., 2004), and SIF (red and far red wavelength) (Li et al., 2018c) have been used to estimate GPP. Remotely sensed data have also been integrated with machine learning approaches (Xiao et al., 2008; Jung et al., 2009; Xiao et al., 2014a) and process-based models (Hazarika et al., 2005; Liu, Xiao et al., 2018) for quantifying C fluxes (e.g., GPP, NPP, ER, NEP, and NBP). NBP can also be estimated from total column CO2 concentrations retrieved mainly in the SWIR wavelength (Rayner and O’Brien, 2001). Both optical (Zhang and Kondragunta, 2006; Blackard et al., 2008) and microwave (Dobson et al., 1992; Le Toan et al., 1992) remote sensing have been used to estimate biomass with empirical approaches. Optical remote sensing data have also been used to quantify SOC with empirical and machine learning approaches (Ben-Dor et al., 2002; Gomez et al., 2008). Fig. 2 illustrates the electromagnetic spectrum and the remote sensing of the terrestrial C cycle.

3. Milestones in remote sensing of the terrestrial carbon cycle

The development of the terrestrial C cycle area of environmental remote sensing during the last five decades is characterized by a series of milestones (Fig. 3). The main milestones are briefly described below.

3.1. First Earth observing satellite and longest record of Earth observations – the Landsat archive

Remote sensing of the terrestrial C cycle mainly started from the launch of the first Landsat satellite (Landsat 1) on July 23, 1972. The launch of Landsat 1 made the global land monitoring possible with optical measurements for the first time. The Landsat series of Earth-observing satellites (Landsat 1–8), co-managed by U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA), provides the longest continuous observations of the Earth’s surface from space (Wulder et al., 2016). Imagery from the Landsat series of satellites (Landsat 1–8) has been used to quantify C fluxes and stocks at regional to global scales (Foody et al., 2003; Masek and Collatz, 2006). The Landsat archive now includes almost 50 years of observations globally, providing opportunities for investigating regional or global ecosystem C dynamics at multidecadal scales.

3.2. Start of global continuous vegetation observations and longest NDVI record – the AVHRR record

The advanced very high resolution radiometer (AVHRR), an instrument on board the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting meteorological satellites (NOAA 7, 9, 11, 14, 16–19), provides spatially and temporally continuous observations of global vegetation from 1981 to present (Pinzon and Tucker, 2014). The AVHRR provides the longest, continuous surface reflectance and NDVI records globally at the spatial resolution of 8 km. The availability of the AVHRR observations since 1981 has made it feasible to monitor photosynthetic activity and GPP seamlessly over the globe. The most widely used AVHRR-derived NDVI records are perhaps the Global Inventory Monitoring and Modeling Studies (GIMMS) NDVI dataset and the GIMMS3g product (Pinzon and Tucker, 2014). Other widely used AVHRR NDVI records include the Pathfinder
Fig. 2. The electromagnetic spectrum and the remote sensing of the terrestrial carbon (C) cycle. The C flux components typically consist of gross primary production (GPP), net primary production (NPP), ecosystem respiration (ER), net ecosystem production (NEP), and net biome production (NBP). The C stocks consist of biomass and soil organic C (SOC). NIR, SWIR, and TIR stand for near-infrared, shortwave infrared, and thermal infrared wavelength, respectively, while MLA stands for machine learning approaches.

Fig. 3. Milestones in remote sensing of the terrestrial C cycle.
NDVI dataset (James and Kalluri, 1994) and AVHRR long term data record (LTDR) (Pedelty et al., 2007). The 30+ year AVHRR record allows the research community to examine C fluxes and/or stocks globally at annual and decadal times.

3.3. Mapping forest biomass using synthetic aperture radar (SAR) imagery

The availability of SIR-C/X-SAR and ERS-1/2 SAR imagery since the early 1990s greatly facilitated the monitoring of forest biomass using SAR data (Dobson et al., 1992; Le Toan et al., 1992). They advanced studies of SAR interferometry on the estimation of forest AGB. The JERS-1, PALSAR, and PALSAR2 provide multi-year global coverage of L-band SAR data which enabled more studies on forest biomass estimation from SAR data. In addition, PolInSAR and TomoSAR provide a new technique for estimating AGB by detecting the 3D structure of forests. Microwave signals can penetrate clouds and therefore SAR can collect data continuously in all weather conditions, allowing the estimation of biomass in large regions including areas often covered by clouds.

3.4. Start of the MODIS era and the first operational global GPP/NPP product

The MODerate resolution Imaging Spectroradiometer (MODIS) on board two key satellites of NASA's Earth Observing System (EOS) - Terra and Aqua provides observations of the Earth's surface and atmosphere with daily coverage in 36 spectral bands and a spatial resolution from 250 m to 1 km. These two major EOS platforms have been providing global observations of the atmosphere, land, and oceans since February 2000 and June 2002, respectively. Compared with AVHRR, MODIS provides observations of the Earth's surface with better radiometric quality and higher spatial resolution. In particular, the MODIS GPP/NPP product (Running et al., 2004), the first operational global GPP/NPP product, provides spatially continuous GPP and NPP estimates globally since 2000. The MODIS data products have also been used to develop continental scale forest biomass maps (Zhang and Kondragunta, 2006; Blackard et al., 2008), and also to enable the estimation of GPP, ER, and NEP with 1 km spatial resolution at regional and continental scales (Xiao et al., 2014a). The availability of MODIS ASCII subsets for a variety of MODIS data products (e.g., surface reflectance, NDVI/EVI, LAI, the fraction of photosynthetically active radiation or FAPAR, GPP/NPP, albedo) (Cook et al., 2004) allows scientists to extract MODIS data for the grid cell or local area (e.g., 3 km × 3 km, 7 km × 7 km) surrounding specific research sites. This has greatly facilitated the calibration and evaluation of LUE models (Yuan et al., 2007; Mahadevan et al., 2008) and machine learning approaches (Xiao et al., 2008) and the data assimilation of terrestrial biosphere models (Stockli et al., 2008) for estimating C fluxes.

3.5. Emergence of lidar technology

Lidar can provide accurate information on the vertical structure of forests and therefore can be used to quantify forest AGB. Lidar data were first used to estimate AGB of temperate deciduous forests (Lefsky et al., 1999). Following this pioneering work, many studies have quantified forest AGB at landscape or regional scales using airborne lidar data (Drake et al., 2002; Naesset and Gobakken, 2008). The availability of spaceborne lidar data in the 2000s made it feasible to map forest AGB over large regions or even over the globe using lidar data (Lefsky et al., 2005). Lidar data have also been used to estimate biomass for other ecosystems such as shrublands and grasslands (Wu et al., 2009; Li et al., 2017). The integration of spaceborne lidar data with other satellite data (e.g., MODIS, Landsat, SAR) can be used to map forest biomass seamlessly at regional to global scales (Saatchi et al., 2012).

3.6. Integrating remotely sensed data with AmeriFlux and FLUXNET measurements

The eddy covariance (EC) technique provides continuous measurements of C, water, and energy exchange at the ecosystem level at various timescales (e.g., diurnal, synoptic, seasonal, and interannual) (Nie et al., 1992; Wofsy et al., 1993; Baldocchi et al., 2001). The partitioning of the NEE measurements can lead to continuous GPP and ER estimates. The EC technique was pioneered in the late 1980s in field campaigns (e.g., FIFE grassland study) (Nie et al., 1992). A growing number of EC flux sites have been established across the globe since the early 1990s. Regional flux networks (e.g., AmeriFlux) and FLUXNET coordinate analysis of EC flux measurements at regional and global scales, respectively, and have made standardized flux datasets available to the research community. The recently released FLUXNET2015 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) provides standardized and high-quality flux and meteorological data for a total of 212 sites globally and has up to 15 years of overlap between flux data and MODIS data products. These flux datasets have been used to evaluate or calibrate C fluxes derived from remote sensing approaches. For example, AmeriFlux data have been used to evaluate the MODIS GPP product (Heinsch et al., 2006; Xiao et al., 2014a) and to estimate parameters in LUE models (Xiao et al., 2011b, 2014b). The release of the AmeriFlux and FLUXNET datasets also enabled the upscaling of flux observations and the generation of gridded GPP, ER, and NEP estimates at regional to global scales using machine learning approaches (Xiao et al., 2008; Jung et al., 2011). The National Ecological Observatory Network (NEON) has begun operations, and this continental-scale observation system will measure C, water, and energy fluxes through 47 terrestrial sites across the U.S. The integration of remote sensing with the measurements from AmeriFlux, FLUXNET, NEON, and other flux networks will greatly benefit carbon cycle studies.

3.7. Quantifying NBP from satellite observations of column CO2 concentrations

The availability of column CO2 concentrations retrievals from satellites in the 2000s and 2010s has made it feasible to quantify NEP from satellite observations. Column CO2 concentrations data have been obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on board ESA's ENVironment SATellite (EnviSat) (2002–2012) (Barkley et al., 2006), the Thermal and Near Infrared Sensor for Carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) on board GOSAT (launched in 2009) (Wunch et al., 2011), NASA’s OCO-2 (2014–present), and the Atmospheric Carbon Dioxide Grating Spectrometer (ACGS) on board the Chinese Carbon Dioxide Observation Satellite (TanSat) (2016–present). For example, Basu et al. (2013) estimated the distribution of CO2 fluxes globally using column CO2 measurements from GOSAT. Inversions of satellite CO2 observations provide useful constraints on terrestrial C sinks/sources, although significant biases exist for fluxes even aggregated over continental scales (Basu et al., 2013; Reuter et al., 2014).

3.8. Free access to the Landsat record

Prior to 2008, the cost and access to Landsat imagery had always limited our ability to monitor the Earth's land surface (Woodcock et al., 2008). On April 21, 2008, the USGS announced plans to make all archived Landsat scenes available to all users at no charge. The research community has had “Web-enabled” access to the entire Landsat record since then. This new data policy has revolutionized the use of the Landsat archive in creating new science, methods, and data products (Wulder et al., 2012). The Landsat archive is also readily available on the Google Earth Engine (Gorelick et al., 2017) for scientific analysis. The free-access policy of the Landsat archive and its availability on Google Earth Engine are anticipated to promote the study of the...
terrestrial C cycle.

3.9. Advent of solar-induced chlorophyll fluorescence measurement from space

The recent availability of satellite-based SIF measurements has great potential for estimating terrestrial GPP regionally or globally (Frankenberg et al., 2011; Joiner et al., 2011; Li and Xiao, 2019). Previous studies have demonstrated strong correlations between SIF and GPP by examining the relationship of satellite-derived SIF with coarse-resolution, gridded GPP data products (Guanter et al., 2012; Parazoo et al., 2014) or flux tower GPP more recently (Sun et al., 2017; Verma et al., 2017; Wood et al., 2017; Li et al., 2018b, 2018c). Previous studies showed that SIF predicted GPP better than satellite-derived VIs and LUE models (Frankenberg et al., 2011; Li et al., 2018b, 2018c). SIF is also likely to be more sensitive to changes in plant photosynthetic status caused by environmental stresses such as heat and water stresses than most VIs (Daumard et al., 2010; Middleton et al., 2018; Zarco-Tejada et al., 2013; Joiner et al., 2014; Rascher et al., 2015) and has been increasingly used to examine the dynamics of terrestrial photosynthesis and its responses to drought (Sun et al., 2015; Yoshida et al., 2015; Li et al., 2018a). Satellite-based SIF observations will likely bring revolutionary changes to the estimation of terrestrial photosynthesis from space.

4. Remote sensing of carbon fluxes

Carbon fluxes can be quantified using various remote sensing data and methods. This section is divided into the following sub-sections: vegetation indices, light use efficiency models, terrestrial biosphere models, data-driven (or machine learning) approaches, solar-induced chlorophyll fluorescence, land surface temperature, and atmospheric inversions.

4.1. Satellite-derived vegetation indices as proxies of GPP and NPP

VIs derived from remote sensing spectral measurements are perhaps the most basic spectral measures of plant biologic activity from space. They combine the chlorophyll-sensitive red absorbing band with the leaf- and canopy structure-sensitive, NIR band, to represent a community property of canopy “greenness” encompassing canopy structure, chlorophyll content, plant phenology and leaf ontogeny. VIs aim to quantify the presence and extent of green vegetation and enable inter-comparisons of vegetation “greenness” across space and time. The earliest VIs, such as the NDVI (Rouse et al., 1974), the perpendicular vegetation index (PVI) (Richardson and Wiegand, 1977), and the tasseled cap green vegetation index (TC-GVI) (Kauth and Thomas, 1976), have been widely used for estimating plant productivity. More recently developed greenness and chlorophyll indices include the EVI (Huete et al., 2002), the wide dynamic range vegetation index (WDRVI) (Gitelson, 2004), and the MERIS total chlorophyll index (MTCI) (Dash and Curran, 2004). The robustness of VIs and available long term time series have generated a vast number of climate-change studies over northern latitudes, Africa, and the Amazon (Tucker et al., 1986; Myneni et al., 1997a; Tucker et al., 2001; Zhou et al., 2001; Xiao and Moody, 2005; Saleska et al., 2016).

The phenological life cycle of plant species has large effects on photosynthesis rates and annual productivity (Tucker et al., 1986), and VIs are able to provide seasonal and annual growing season metrics of plant productivity. Previous studies found strong relationships between aboveground NPP (ANPP) and growing season integrated NDVI for North American biomes (Goward et al., 1985) and later between ANPP and EVI for U.S. arid grasslands to forests (Ponce-Campos et al., 2013) and arid and mesic grasslands (Moran et al., 2014). In general, VIs provide measures of the capacity of plants to absorb light energy and to reflect recent environmental stresses with reductions in NDVI indicative of less chlorophyll and/or less foliage (Running et al., 2004). Primary production is essentially an integrator of resource availability, and according to the resource optimization theory (Field et al., 1995), plants can maximize photosynthesis and growth with the adjustment plant characteristics by ecological processes to match the environmental capacity at weekly to monthly timescales. Often in-situ ANPP-VI uncertainties may arise due to discrepancies in timing of harvesting sampling periods. For example, when EVI was only partially integrated from the beginning to the peak of the growing season period (rather than the full season), significant improvements in productivity-EVI relationships were found across grassland sites (Moran et al., 2014). The NDVI integral over the early growing season was strongly related to in-situ measurements of tree diameter and ring width in the central Great Plains (Wang et al., 2004). Continuous VI growing season productivity profiles allow one to better synchronize VI temporal values with actual in-situ sampling periods.

VIs are used to estimate the rates of ecosystem processes (e.g., photosynthesis) that depend on absorbed light (Monteith and Unsworth, 1990). With the widespread use of VIs in large-scale productivity assessments, there is great interest in learning how to best couple VIs with in-situ productivity measures from flux towers. Further, the flux tower observations are top-of-canopy measurements that do not need details of canopy architecture or LAI, facilitating their comparisons with VI measures that similarly involve community properties resulting from integrative, top-of-canopy radiation interactions. VIs in combination with meteorological data (e.g., temperature, vapor pressure deficit or VPD, solar radiation) have been used to estimate GPP at various spatial scales using LUE models as described below in 3.2. There have also been many attempts to estimate GPP based solely on remote sensing inputs, thereby minimizing or eliminating the need for meteorological and LUE information. Spectral VIs were found to accurately estimate GPP across a wide range of North American ecosystems (Wylie et al., 2003; Rahman et al., 2005), African tropical savannas (Sjostrom et al., 2011), Australian mesic and xeric tropical savannas (Ma et al., 2013), various terrestrial ecosystems in China (Xiao, Zhou, et al., 2015), and dry to humid tropical forests in Southeast Asia and the Amazon (Huete et al., 2006; Huete et al., 2008). A more recent study examined the relationship between satellite-derived VIs and flux tower GPP for 121 FLUXNET sites encompassing a wide range of biomes across the globe and assessed how the VI-GPP relationship varies with indices, biomes, timescales, and the bidirectional reflectance distribution function (BRDF) effect (Huang et al., 2019). These studies indicated that VIs are able to estimate GPP with relatively high accuracy, thus potentially simplifying C balance models and offering opportunities for region-wide upscaling of C fluxes (Glenn et al., 2008).

The above studies, however, reported weaker relationships between VIs with tower GPP over aseasonal evergreen forests compared to seasonally contrasting deciduous forests. This may simply be due to the low seasonal signal range of VI values from which to statistically fit good relationships, although significant differences in VI relationships with tower GPP were found between biologically driven and meteorologically driven ecosystems (Restrepo-Coupe et al., 2016). No significant relationships between GPP and VIs were observed for primarily meteorological-driven and relatively aseasonal ecosystems (e.g., tropical forests). On the other hand, for phenology-driven ecosystems, GPP is driven by changes in vegetation status and can be well represented by VIs. The highest VI-GPP correlations were found in ecosystems with synchronous meteorology and phenology, while low correlations were observed in locations with asynchronous meteorology and phenology (e.g., Mediterranean ecosystems). When successful, satellite-derived VIs constitute measurements of ecosystem structure and function, and are more related to measures of photosynthetic capacity (the maximum photosynthesis rate under ideal conditions of light, moisture, temperature, and nutrient availability) rather than GPP. Besides VIs, biophysical variables (e.g., canopy nitrogen content, chlorophyll content) derived from remote sensing data have also been used to estimate C
fluxes. For example, canopy nitrogen content retrieved from hyperspectral airborne (e.g., the Airborne Visible/Infrared Imaging Spectrometer or AVIRIS) and broad-band satellite (e.g., MODIS) imagery has been used to estimate photosynthetic capacity (Ollinger et al., 2008) and NPP (Smith et al., 2002). These studies are mainly limited to landscapes and small regions due to the limited availability of hyperspectral data.

4.2. Estimating GPP and NPP with light use efficiency models

The LUE models (i.e., production efficiency models) are widely used to quantify GPP and NPP from remotely sensed data. LUE models are based on the original radiation use efficiency logic of Monteith (1972) that under well-watered and fertilized conditions the productivity of a cropland exhibits a linear relationship with the absorbed photosynthetically active radiation (APAR) by the canopies. Under actual environmental conditions, potential optical energy utilization rate is affected by water, temperature, and other environmental factors. Therefore, GPP (or NPP) can be simulated in the LUE logic as APAR multiplied by maximum LUE and environmental stresses. The LUE approach has been one of the most important methods to map GPP and NPP regionally or globally (Potter et al., 1993; Running et al., 2004).

Remote sensing data play a significant role in the LUE approach by providing information on vegetation type, growth status, and environmental conditions. FAPAR is derived through spectral VI relationships (Asrar et al., 1984; Sellers, 1985; Goward and Huemmrich, 1992) or based on FAPAR products (e.g., MODIS FAPAR) (Zhao et al., 2005). Asrar et al. (1984) demonstrated the NDVI was linearly related with vegetation absorption of light energy (APAR) or FAPAR, and thereby related to productivity through the potential capacity of vegetation to absorb light for photosynthesis. The linear relationship between NDVI and FAPAR has been documented through field measurements (Ruimy et al., 1995; Fensholt et al., 2004) and theoretical analyses (Sellers, 1985; Goward and Huemmrich, 1992; Myeni and Williams, 1994), although their relationship differs with canopy type, structure, soil, and sun-view orientation and saturates at high values (e.g., NDVI > 0.7).

AVHRR-FAPAR (Zhu et al., 2013) and GLASS-FAPAR products (Xiao, Liang, et al., 2015) extend the temporal coverage of FAPAR back to 1982 and can potentially lead to long-term GPP estimates. A previous study suggested that the fraction of PAR absorbed by chlorophyll throughout the canopy (FAPARCHL) could lead to more accurate cropland GPP estimates than the MODIS FAPAR (Zhang et al., 2014b). Remote sensing also provides measures of two other inputs of LUE models: water stress (Jones et al., 2017) and incident radiation (Zhang et al., 2014c). The photochemical reflectance index (PRI) (Gamon et al., 1997) derived from tower-based spectral measurements (Middleton et al., 2009) and MODIS data (Middleton et al., 2016) has been shown to be a good proxy for LUE. In addition, remote sensing also provides spatially explicit information on land cover type (Loveland et al., 2000; Friedl et al., 2010) that determines maximum LUE and other model parameters.

A number of LUE models have been developed and widely used for quantifying GPP (or NPP) (Potter et al., 1993; Running et al., 2004; Xiao et al., 2004; Yuan et al., 2007). In particular, a LUE approach along with NDVI (or EVI) was implemented in the Carnegie Ames Stanford Approach (CASA) Biosphere model for simulating NPP (Potter et al., 1993). CASA has been widely used to simulate C dynamics at regional to global scales although it could lead to large biases in simulated C fluxes (Randerson et al., 2009). Moreover, a LUE approach along with MODIS data were used to develop the standard MODIS GPP/NPP product, the first operational and most widely used GPP/NPP product (Running et al., 2004) (Fig. 4). All LUE models integrate the physiological regulations of temperature and water demand (soil moisture or atmospheric VPD). Some models also incorporate the enhancement effects of atmospheric CO$_2$ fertilization (Veroustraete et al., 2002). In addition, some models (e.g., CFlux, TL-Model) explicitly simulate the differential effects of diffuse and direct radiation on photosynthesis (Gu et al., 2002) using an empirical equation or a two-leaf model (King et al., 2011; Zhou et al., 2016). LUE models with the addition of a linear or nonlinear function of air temperature have also been used to estimate NEE (Mahadevan et al., 2008; Xiao et al., 2011b). Different LUE models differed in algorithms describing the regulations of environmental stresses particularly water stress on GPP (Yuan et al., 2014). Different model structures and parameterization schemes can result in marked discrepancies in GPP estimates (Xiao et al., 2011b; Cai et al., 2014; Yuan et al., 2014). Having proper model structure that accurately represents the regulation of all driving factors on GPP is essential for improving the GPP estimates (Zheng et al., 2018). Uncertainty in model parameters could lead to substantial uncertainty in flux estimates at regional scales (Xiao et al., 2014b).

Reducing uncertainty in the GPP (or NPP) estimates is one of the challenges of LUE models. A model-data comparison study showed most LUE models underestimated GPP at cloudy or overcast days because the effects of diffuse radiation from cloud cover on LUE were ignored (Yuan et al., 2014). A recent study revealed that soil moisture stress alone reduced GPP at semi-humid, semi-arid, or arid sites by up to 40%, but most LUE models only integrate the effects of atmospheric water demand that cannot account for the limitation of soil moisture on GPP (Stocker et al., 2018). A second challenge revolves around the fact that the uncertainty of remote sensing data would further lead to uncertainty in vegetation productivity estimates. For instance, the saturation problem of satellite-derived VIs generally results in underestimation of GPP or NPP in areas with dense vegetation. In addition, the global GPP products based on LUE models are at medium spatial resolution (e.g., 1 km), limiting their use in some applications (e.g., estimating regional crop yield, quantifying GPP in urban areas) that require GPP products with finer spatial resolution. The fusion of temporally dense satellite data (e.g., MODIS) and spatially finer observations (e.g., Landsat) can allow the estimation of GPP at finer spatial resolution (e.g., 30 m) (He et al., 2018), overcoming the limitations of current GPP products due to coarse resolution.

4.3. Quantifying carbon fluxes using terrestrial biosphere models

Process-based terrestrial ecosystem models describe terrestrial C, water, and energy fluxes in a mechanistic way to quantify these terrestrial cycles. The process-based representation of ecosystem processes allows us to understand terrestrial ecosystem status and changes in mechanistic ways. These models can be divided into two categories: diagnostic models and prognostic models. Diagnostic models use remotely sensed data (e.g., LAI, FAPAR) as temporally-variant input data to capture spatial and temporal variations in terrestrial vegetation in a more realistic way, and therefore their simulations are limited to the period when remotely sensed data are available. Prognostic models, in general, use climate data as temporally-variant input data and can simulate past, present, and future changes in terrestrial ecosystem C dynamics. Many terrestrial model intercomparison studies revealed large uncertainties in simulated CO$_2$ fluxes at both site (Ichi et al., 2013) and regional (Huntingzinger et al., 2012) scales. Therefore, refinement of these models are strongly required. Both diagnostic models and prognostic models can make use of remotely sensed data to improve their performance in quantifying C fluxes.

Diagnostic models generally adopted process-based photosynthesis sub-models (Farquhar, et al., 1980; Collatz et al., 1991). With temporally-variant inputs of satellite-based LAI and/or FAPAR, photosynthesis is simulated and GPP is then calculated. These models are designed to estimate GPP in a more realistic way by considering mechanistic behaviors of photosynthesis responding to environmental conditions (e.g., climate and atmospheric CO$_2$ concentration) and incorporating actual spatial and temporal variations in LAI and/or FAPAR. For example, multiple satellite-derived LAI products were used to prescribe LAI in the BEPS model to simulate C and water fluxes for China's...
Data-driven (or machine learning) approaches have been used to upscale C fluxes (GPP, ER, NEE) from sites to regional or global scales (Zhang et al., 2007; Xiao et al., 2008, 2010, 2011a; Jung et al., 2011; Ichii et al., 2017). A special issue published in Journal of Geophysical Research: Biogeosciences (Xiao et al., 2012) reflected the progress in the upscaling of carbon and water fluxes at regional to global scales. The quantification of C fluxes at regional to global scales require the upscaling of the flux observations to these broad regions (Xiao et al., 2008).

4.4. Quantifying GPP, ER, and NEP using data-driven approaches

Remote sensing has been widely used to scale flux observations from EC flux towers to broad regions during the last decade or so. The growing network of flux towers provides continuous observations of the exchange of C, water, and energy between ecosystems and the atmosphere. Despite the large number of flux towers across the globe, they are not uniformly distributed and the tower measurements only represent the fluxes at the small tower footprint. The quantification of C fluxes at regional to global scales requires the upscaling of the flux observations to these broad regions (Xiao et al., 2008).

Data-driven (or machine learning) approaches have been used to upscale C fluxes (GPP, ER, NEE) from sites to regional or global scales (Zhang et al., 2007; Xiao et al., 2008, 2010, 2011a; Jung et al., 2011; Ichii et al., 2017). A special issue published in Journal of Geophysical Research: Biogeosciences (Xiao et al., 2012) reflected the progress in the upscaling of carbon and water fluxes form towers to broad regions prior to 2012, and significant advances have been made since then. The machine learning approaches used include artificial neural network (Papale and Valentini, 2003), support vector machine (Yang et al., 2007), piecewise regression models (Zhang et al., 2007; Xiao et al., 2008), model tree ensemble (Jung et al., 2009), and random forest (Bodasheim et al., 2018). For example, a data-driven approach based on piecewise regression models were used map GPP, ER, and NEE for North America from MODIS and meteorological data (Xiao et al., 2014a)(Fig. 5). A recent study showed that four different data-driven techniques, including the adaptive neuro-fuzzy inference system,
artificial neural network, extreme learning machine, and support vector machine, had almost identical performance in estimating forest C fluxes (Dou and Yang, 2018). Although machine learning approaches differ from mechanistic models and do not explicitly incorporate biogeochemical processes, the machine learning methods can effectively estimate C fluxes through time and space and also reveal plant responses to environmental controls.

A variety of remotely sensed datasets such as VIs (e.g., NDVI, EVI), LAI, FAPAR, and land cover type have been used in data-driven approaches for the upscaling of C fluxes. Both daytime and nighttime LST data from MODIS have been incorporated to provide temperature estimates with finer spatial resolution than meteorological reanalysis data (Xiao et al., 2008; Xiao et al., 2010; Xiao et al., 2014a). Satellite-derived measures of water availability such as the normalized difference water index (NDWI) (Gao, 1996) have also been incorporated as explanatory variables in upscaling efforts (Xiao et al., 2008; Xiao et al., 2010; Xiao et al., 2014a). Some studies used additional remotely sensed variables. For example, the incorporation of stand age and AGB improved the estimation of C fluxes for forests, and the addition of the proxy for canopy nitrogen content (i.e., the NIR reflectance integrated over the peak portion of the growing season) reduced the uncertainty in C fluxes for both forests and non-forests (Xiao et al., 2014a). A more recent study integrated satellite-derived SIF into the artificial neural network model for global GPP estimation, and indicated that SIF could improve the estimation of GPP in regions where flux variability is not mainly driven by phenology and incident radiation (Aleemohammad et al., 2017).

Machine learning approaches have been used to estimate C fluxes with reasonable accuracy (Zhang et al., 2007; Xiao et al., 2008; Jung et al., 2009; Xiao et al., 2010). The accuracy of the resulting GPP estimates is generally comparable to or slightly better than that of other approaches (e.g., LUE models) (Zhang et al., 2007; Ichii et al., 2017). The accuracy of ER was generally lower than that of GPP (Xiao et al., 2014a; Boyte et al., 2018) partly because the spatially explicit information on C pools and soil conditions is not readily available (Xiao et al., 2014a) and the regulation of soil respiration by temperature and precipitation is not well understood (Boyte et al., 2018). In general, the NEP estimation accuracy was lower than that of GPP and ER (Jung et al., 2011; Tramontana et al., 2016; Ichii et al., 2017; Bodesheim et al., 2018). Tramontana et al. (2016) compared 11 regression algorithms for estimating global ecosystem C fluxes, indicating that the accuracy of ER was slightly lower than that of GPP but higher than that of NEP. The lower accuracy in NEP estimates can be attributed to the lack of information on disturbance history, stand age, biomass, SOC, and management practices (Xiao et al., 2014a; Papale et al., 2015). Based on the inter-comparison of models, a previous study showed that the Support Vector Machine was comparable to eight process-based models (Ichii et al., 2010). Another multi-model comparison study showed that the upscaling approach based on piecewise regression models (Xiao et al., 2010, 2011a) was comparable to, or slightly better than, most ecosystem models for estimating C fluxes (Raczka et al., 2013).

Despite their simplicity and effectiveness, the machine learning approaches face challenges and the resulting flux estimates have various sources of uncertainty. First, the number of EC flux sites and their distribution can significantly affect the accuracy and interannual variability of the regional flux estimates based on machine learning methods (Papale et al., 2015). A recent study based on multiple machine learning algorithms found that fluxes were better predicted in temperate regions than under-represented regions (e.g., the tropics) (Tramontana et al., 2016). In addition, the errors or uncertainty of satellite data and other explanatory variables (e.g., meteorological data) could propagate and lead to biases in the gridded flux estimates. The NEE estimates could have substantial uncertainty, particularly in productive regions, which makes it challenging to quantify the sizes of C sinks and sources. Explicitly incorporating information on management and disturbance into the machine learning approaches is anticipated to improve the accuracy of the resulting flux estimates (Xiao et al., 2011a).

4.5. Estimating GPP with solar-induced chlorophyll fluorescence

SIF is an electromagnetic signal emitted in the red and far-red portions of the spectrum by green leaves after excitation by solar radiation. SIF originates at the core of the photosynthetic apparatus and holds a mechanistic link to photosynthesis and is thus a better proxy of GPP than other biophysical parameters or VIs (Porcar-Castell et al., 2014). The relationship between SIF and GPP has been examined by a growing number of field studies (Flexas et al., 2000; Meroni et al., 2008; Rascher et al., 2009; Daumard et al., 2016; Damm et al., 2015; Rossini et al., 2015; Yang et al., 2015b; Migliavacca et al., 2017; Yang et al., 2017; Miao et al., 2018; Yang et al., 2018; Gu et al., 2019). These studies have shown that SIF has the potential to indicate actual (as opposed to potential) plant photosynthetic activity, but at the same time have revealed the complexity of the link between top-of-canopy SIF measurements and GPP for the whole canopy.

At regional to global scales, an important breakthrough was made in 2011 with the development of global SIF maps (Frankenberg et al., 2011b).
and TROPOMI (the TROPOspheric Monitoring Instrument) (Kohler et al., 2015) and more recently from OCO-2 (Sun et al., 2018) solution (1.3 km × 2.25 km at nadir) makes it to be the portion of the Earth’s land surface, but its relatively high spatial resolution (40 km × 40 km in the best case). OCO-2, in turn, samples only a small and long time series despite its coarse spatial resolution (Guanter et al., 2011; Joiner et al., 2011) based on measurements from the Japanese GOSAT mission. The SIF was retrieved by evaluating the in-filling of the solar Fraunhofer lines by SIF present in the 755–775 nm window. Following these two pioneering studies, several global SIF datasets have been produced from other space-borne spectrometers, including GOME-2 (the Global Monitoring Ozone Experiment 2) and SCIAMACHY (the SCanning Imaging Absorption spectroMeter for Atmospheric Cartography) (Joiner et al., 2012; Joiner et al., 2013; Kohler et al., 2015; Wolanin et al., 2015) and more recently from OCO-2 (Sun et al., 2018) and TROPOMI (the TROPOspheric Monitoring Instrument) (Kohler et al., 2018). The GOME-2 SIF dataset has been the most widely used SIF product because of its continuous spatial sampling, global coverage, and long time series despite its coarse spatial resolution (1.3 km × 2.25 km at nadir) makes it to be the first mission allowing direct comparisons of SIF retrievals and flux tower-based GPP estimates at the ecosystem scale (Verma et al., 2017; Wood et al., 2017; Li et al., 2018b, 2018c), which promises to deliver important information for the understanding of SIF-GPP relationships. The discrete OCO-2 soundings have also been used to generate spatially and temporally continuous SIF estimates globally. For example, Li and Xiao (2019) developed the global, OCO-2 based SIF product (GOSIF) with 0.05-degree resolution and 8-day time step for the period from 2000 to present using OCO-2 SIF, MODIS, and meteorological reanalysis data (Fig. 6). In addition, the first SIF retrievals from TROPOMI have become available very recently (Kohler et al., 2018). TROPOMI shares the spatially-continuous sampling of GOME-2 and its potential for SIF retrieval at both red and far-red wavelengths, but offers a much better monitoring potential because of the finer spatial resolution (i.e., 3 km × 7 km at nadir), a number of clear-sky SIF observations, and daily global coverage. The bidirectional effects associated with the wide swath of TROPOMI might introduce difficulty to the retrieval of far-red fluorescence.

A number of studies based on global SIF products have demonstrated that a close relationship between SIF and GPP holds at ecosystem to global scales. A strong linear correlation was observed between SIF based on GOSAT and gridded GPP data derived from data-driven models for global and annual data composites (Frankenberg et al., 2011), and the same applied to monthly averages over single biomes (Guanter et al., 2012). Joiner et al. (2014) found a good correspondence between the temporal trajectories of SIF and GPP. Li et al. (2018b) conducted a global-scale analysis based on OCO-2 soundings and flux tower data, showing that there was a strong relationship between SIF and GPP at the ecosystem level, and the relationship was also nearly universal across a wide variety of biomes. Other studies have focused on the analysis of the magnitude and dynamics of GPP using satellite-based SIF data over particular biomes, such as large crop belts (Guanter et al., 2014; Zhang et al., 2014; Song et al., 2018), the Amazon forest (Lee et al., 2013; Parazoo et al., 2013; Guan et al., 2015), high latitude forests (Walther et al., 2016; Jeong et al., 2017), temperate forests (Li et al., 2018c), tundra ecosystems (Luus et al., 2017), and dryland ecosystems in Southwest U.S. (Smith et al., 2018). There is therefore a large body of literature showing that space-based SIF retrievals are able to represent GPP better than the reflectance-based vegetation parameters widely used in remote sensing.

To relate SIF to GPP some considerations should be taken into account. First, SIF is known to be a good indicator of green APAR, as SIF responds to PAR and is directly emitted by chlorophyll-a molecules. This close relationship between SIF and green APAR is most likely to drive the high linear SIF-GPP correlations at coarse spatial and temporal scales (Yang et al., 2018) for those ecosystems (e.g., croplands, grasslands) in which productivity is driven by total chlorophyll content (Guanter et al., 2014). However, there is much less remote sensing-based evidence for the ability of SIF to track short-term changes in photosynthetic efficiency (Middleton et al., 2018). The SIF yield might be less sensitive than the photosynthesis yield under stress conditions (Wohlfahrt et al., 2018). In addition, although photosynthesis and fluorescence yields tend to be positively correlated under natural conditions, they have different temporal trajectories within the day and season for certain stress conditions (Porcar-Castell et al., 2014). Second, the relationship between photosynthesis and top-of-canopy SIF measurements is complicated by leaf and plant structure effects: a fraction of the SIF photons emitted by one leaf can be trapped by other leaves,

![Fig. 6. Global solar-induced chlorophyll fluorescence (SIF) map based on averaged daily values over the 8-day period July 12-19, 2017. The SIF data are from the global, OCO-2 based SIF product (GOSIF) (http://globalecology.unh.edu) (Li and Xiao, 2019). GOSIF has 0.05-degree spatial resolution and 8-day time step and spans the period from 2000 to present.](image-url)
and is therefore not counted in the satellite measurement. This effect strongly depends on canopy structure and leaf morphology and orientation (Fournier et al., 2012) as well as wavelength. Some studies dealing with this topic and proposing different solutions for canopy-to-leaf downscaling have been published recently (Liu, Guanter, et al., 2018; Romero et al., 2018; Yang and van der Tol, 2018), and further research is warranted in the next years. Third, the clear-sky bias in space-based SIF retrievals complicates their use to quantify daily GPP estimates comprising both clear- and cloudy-sky conditions. This clear-sky bias especially affects SIF-based GPP estimates for those ecosystems in which clear-sky GPP differs substantially from cloudy-sky GPP (Zhang et al., 2018b).

The systematic estimation of GPP from space-based SIF retrievals requires therefore an explicit or implicit consideration of those confounding factors. Process-based modeling appears as a potentially effective approach to dealing with this problem. Mechanistic models with explicit representations of SIF and photosynthesis are being developed. For example, the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) photosynthesis and fluorescence model (van der Tol et al., 2009) couples SIF and GPP with a series of inputs describing vegetation status (pigment content and canopy structure) and meteorological conditions, and it is being widely used to analyze the relationship between SIF and GPP (Verrelst et al., 2015; Zhang et al., 2016). In parallel, the photochemistry modules of some DGVMs are being extended in order to incorporate a consistent modeling of SIF (Lee et al., 2015b; Thum et al., 2017). An accurate representation of photosynthesis and SIF in such global C models is a pre-condition to the use of space-based SIF retrievals to benchmark terrestrial biosphere models and to improve their global GPP predictions, which could be based on data assimilation schemes (Scholze et al., 2017; MacBean et al., 2018).

4.6. Estimating ER from land surface temperature

ER is a large C flux from the land to the atmosphere, and is thus an important contributor to the increasing atmospheric CO2 and, consequently, global climate change (Le Quere et al., 2009). The underlying reason of correlating air (or soil) temperature to ER is that temperature is a main environmental controlling factor of respiration rates (Raich and Schlesinger, 1992; Lloyd and Taylor, 1994). A remote sensing approach of using LST has the potential of providing spatially distributed estimates of ER on a per-pixel basis. Rahman et al. (2005) first found that the MODIS-derived LST (MOD11) was strongly correlated with the EC-derived ER, especially for densely forested sites. Many studies then tested the ER-LST relationship and its variations in other regions and for different biomes. A strong correlation between MODIS LST and tower ER was found for two Swedish peat lands (R2 = 0.93 to 0.98) (Schubert et al., 2010). Moore et al. (2013) utilized a modified version of the ‘TG’ model (Sims et al., 2008), in which LST was combined with the EVI of a high-elevation insect-infested forest to estimate GPP and then to derive ER (Moore et al., 2013). The MODIS-derived LST was combined with a MODIS-derived water index to model ER of a mixed temperate forest with improved seasonal cycles in NEE (Tang et al., 2011). Although most of the LST-ER correlation studies used MODIS LST data, Kimball et al. (2009) used the LST derived from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) sensor and found it is an effective surrogate to soil respiration (HR and root respiration) across a broad range of boreal forest, grassland and tundra sites in the boreal and arctic biomes.

There are a few concerns on the use of LST for estimating ER. LST is not an exact measure of either soil temperature or vegetation temperature, but a complex thermal representation of the three-dimensional land surface. Satellite pixel size and the time of data acquisition also affect the LST values. Averaging LST values over a temporal period (such as 8 days for MODIS) and over a larger area (such as 3 × 3 MODIS pixels) acts as a smoothing filter, which can provide a better correlation with time averaged ER. Another limitation of the semi-empirical LST-ER correlation is that it does not include other constraints to ER, such as plant productivity, soil moisture, and nutrient limitations (Jagermeyr et al., 2014). In addition, although the biochemical processes involved in the two main components of ER (i.e., autotrophic and heterotrophic respiration) have been studied quite extensively (Atkin and Tjoelker, 2003; Sitch et al., 2003; Wehr et al., 2016), measuring these component fluxes separately from an ecosystem is challenging, mainly due to the difficulty in their direct measurement. The EC technique does not provide estimates of the ER components, and therefore the satellite-derived LST can only be used to directly estimate ER.

A few recent studies have extended the LST-ER relationships to include a wider range of ecosystem functionalities and parameters for improving ER estimates using remotely sensed data. Wu et al. (2014) found that the nighttime LST, when combined with NDVI, was strongly correlated with ER (R2 = 0.86) of aspen, black spruce and jack pine stands in Saskatchewan, Canada and the NDVI was an important driver of ER, confirming the connection between photosynthetic activities and both AR and HR (Wu et al., 2014). Similarly, Gao et al. (2015) developed an ER model by assuming that one part of ER is derived from the current photosynthetic with the respiratory rate coupling closely with GPP, and the other part of ER is derived from reserved ecosystem organic matter, with the respiratory rate responding strongly to temperature change. Their model was driven by MODIS-derived EVI, NDWI, and LST and explained 93% of the variance in EC-derived ER for temperate mixed forest, temperate steppe, alpine shrubland, alpine marsh and alpine meadow-steppe in northern China and the Tibetan Plateau (Gao et al., 2015). In another study, ER was modeled as an exponential function of soil temperature and moisture and the model output explained up to 82% of the variance in the EC-derived ER of a temperate deciduous broadleaf forest in Ozark, Missouri (Huang et al., 2014). More recently, six different process models were used to examine the LST-ER relationships of global terrestrial vegetation, showing that the LST-ER response curves largely displayed exponential trend of respiration rates with increasing temperature, although the exact forms of the relationships varied among the models (Ai et al., 2018). Based on this finding, Ai et al. (2018) combined the EVI of global vegetation types in their models to incorporate the effects of vegetation on respiration and developed models of reference respiration, which was capable of capturing the spatial and temporal patterns of ER at the global scale.

Since the first publication showing the promise of estimating ER from satellite-derived LST (Rahman et al., 2005), most studies on this topic have used semi-empirical methods to correlate ER with LST. As mentioned above, a few recent studies have attempted to utilize the LST in process-based models in order to estimate ER of larger areas and diverse ecosystems. Further improvement on incorporating satellite-derived LST in the process-based ER models would allow the use of LST in operational models for routinely deriving ER values for global ecosystems. The finer-resolution LST data derived from Landsat have not been used to estimate ER yet. Recent studies have addressed the generation of consistent LST data from Landsat imagery and estimating their uncertainties (Fu and Weng, 2016; Labary and Schott, 2018). Studies are needed to explore whether a smaller pixel of LST (such as 30 m of Landsat vs. 1 km of MODIS) data would lead to better ER estimates, particularly in heterogeneous regions. It should be noted that the overpass time (around 10 am) is not perfect to studying LST and thereby ER. The AVHRR provides routine LST data of global coverage (1.1 km, two passes each day), and Terra and Aqua MODIS together offers global daytime and nighttime LST measurements for four different times of the day. ASTER provides 90 m resolution LST data every 16 days, but these data are available free of charge. Landsat 9, which has been fast-track for a December 2020 launch, will have a Thermal Infrared Sensor 2 (TIRS-2) with two TIR bands onboard which will enable consistent retrieval of LST. Use of thermal sensors onboard unmanned aerial vehicles (UAV, or drones) will be able to provide high resolution, near surface LST measurements for studying ER at detailed
spatial scales and on-demand temporal intervals. The NOAA’s Geostationary Operational Environmental Satellites (GOES) provide routine LST data (4 km, once every 15 min) for North America and South America. These GOES LST data can potentially be used to examine the diurnal cycles of ER. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) launched on June 29, 2018 has the diurnal sampling capability, and the resulting LST imagery (70 m × 70 m spatial resolution) can also potentially be used to study the diurnal variations of ER.

4.7. Quantifying NBP using atmospheric inversions

NBP, the net carbon exchange between ecosystems and the atmosphere, can be quantified using remotely sensed column CO2 concentrations. CO2 is a passive tracer in the atmosphere: it has no chemical sink there and is only absorbed at the Earth’s surface, by oceans and the terrestrial biosphere. This characteristic, for instance, prevents defining a lifetime for CO2 (Tans, 1997). Marginal sources in the atmosphere from the oxidation of reduced C (Folberth et al., 2005) and from aircraft contribute to the increase of its concentrations, while respiration from the biosphere, outgassing from the oceans and the volcanoes, fires and anthropogenic sources have a much larger impact altogether (Ciais et al., 2013). Air motions therefore directly relate these various sources and sinks, termed “fluxes” hereafter, to the CO2 concentrations that are observed in the atmosphere. This link is not a bijection and inverting it is meaningful only from a statistical point of view. Inversion is usually performed by assimilating the observed CO2 concentrations into a numerical transport model under the constraint of some prior estimation of the fluxes and within a Bayesian framework (Peylin et al., 2013). Such an approach has been developed in the 1990s for the interpretation of measurements from the surface air sample networks (Enting et al., 1995), but sparse measurement coverage, particularly in low or high latitudes and over the oceans, limited the flux information content and motivated the extension of the approach to satellite observations of the CO2 column (Rayner and O’Brien, 2001).

Initial satellite studies focused on partial columns above the planetary boundary layer retrieved from radiances measured in the TIR wavelength by orbiting sensors that were designed for other purposes like meteorology (Chevallier et al., 2009; Nassar et al., 2011; Chevallier et al., 2014): High resolution Infrared Radiation Sounder-2 (HIRS-2)
Remote sensing of carbon stocks

Remote sensing has been widely used to quantify biomass carbon stocks at regional to global scales since the early 1990s. Biomass C stock has been estimated using passive optical remote sensing data, microwave remote sensing data, and lidar remote sensing data. Carbon stocks in soils have also been quantified using remote sensing, mainly for croplands and at relatively small spatial scales.

5.1. Passive optical remote sensing of biomass

AGB has been frequently estimated from passive optical remote sensing that is particularly sensitive to vegetation canopy properties. Passive optical satellite observations with a wide range of spatial resolutions have been applied for estimating AGB. The coarse-resolution data (250 m - 8000 m) (e.g., AVHRR, SPOT, and MODIS) are often used to estimate biomass at regional or global scales for various ecosystems such as forests (Dong et al., 2003; Zhang and Kondragunta, 2006; Chopping et al., 2011), grasslands (John et al., 2018), and Arctic tundra (Epstein et al., 2012). The medium spatial resolution data (~30 m), mainly from Landsat TM/ETM+/OLI, Sentinel-2 Multispectral Imager (MSI), and Terra/Aqua ASTER, are perhaps the widely-used optical remote sensing data for biomass estimation at local and regional scales for different ecosystems such as forests (Fazakas et al., 1999; Turner et al., 2004; Sibanda et al., 2015), grasslands (Friedl et al., 1994), and shrublands (Shoshany and Karnieli, 2011). The high spatial resolution data (~< 5 m), including high-resolution satellite imagery from QuickBird (2.44 m in multispectral and 0.61 m in panchromatic), IKONOS (3.2 m in multispectral and 0.82 m in panchromatic), and WorldView-2/3 (1.85 m in multispectral and 46 cm in panchromatic), are commonly used to calculate local tree biomass (Lebouteil et al., 2007; Palace et al., 2008; Fuchs et al., 2009) and grass biomass (Sibanda et al., 2017).

The variables derived from passive optical remote sensing for biomass estimation mainly consist of spectral reflectance, VIs, spatial texture, and vegetation canopy attributes. Spectral reflectances are the simplest variables, which vary from visible to SWIR wavelength. VIs are more frequently used in biomass estimation because they can enhance green vegetation signals and minimize the impacts from soil background, sun-canopy-sensor geometry, and atmosphere (Huete et al., 1985). The commonly used VIs are NDVI, EVI, Simple Ratio (SR), and the middle infrared (MIR) index, chlorophyll based difference index, and tasseled cap (TC) transformation or principal component analysis (PCA) of spectral bands. Spatial texture of spectral or panchromatic bands, which describes the spatial characteristics of images and identifies objects or regions in images, has also been used for biomass estimation (Sarker and Nichol, 2011). Canopy spatial texture is scale dependent, which can be calculated using a 3 × 3 window size or Fourier Transform Textural Ordination (FOTO) method from very high spatial resolution imagery (Eckert, 2012; Dube and Mutanga, 2015b; Ploton et al., 2017).

Moreover, vegetation canopy attributes derived from optical satellite data can be used as effective predictors of AGB. The frequently used attributes include LAI, canopy structure, and tree shadow fraction. LAI, an important biophysical factor regulating photosynthesis, evapotranspiration, and C fluxes, has been estimated from spectral VIs based on either empirical, regression models (Heiskanen, 2006) or radiative transfer (RT) algorithms (Myneni et al., 1997b). Canopy structure is generally quantified using biophysical parameters (e.g., tree crown size/area, height, and density), and both foliage biomass and total standing biomass are related to these parameters (Franklin and Hiernaux, 1991; Wu and Strahler, 1994). Canopy reflectance models have been used to estimate the crown size and density within each grid cell. The Li-Strahler geometric-optical (GO) model is a widely used canopy reflectance model (Li and Strahler, 1985). Shadow fraction can also be quantified from medium-resolution satellite imagery (e.g.,
AGB is generally estimated by empirically or functionally relating to satellite-derived variables based on empirical models (regression or machine learning approaches) and physically-based allometric models. Simple regression models are established by associating a single VI or spectral reflectance to field biomass measurements (Roy and Ravan, 1996; Calvao and Palmeirim, 2004; Heiskanen, 2006). The simple linear model format could also be transformed from logarithmic or exponential functions. The model coefficients can be estimated with the ordinary least-squares approach by assuming that independent variables have high accuracy or the reduced major axis regression method by assuming that both dependent and independent variables have significant uncertainties (Larsson, 1993; Powell et al., 2010). Although the simple model is widely applied to estimate AGB in a local region, the model accuracy and optimal independent variables vary with spectral variable and local environment (Roy and Ravan, 1996; Foody et al., 2003; Lu et al., 2004). Further, the simple regression models could also correlate biomass to shadow fraction from high resolution imagery (Jasinski and Crago, 1999; Leboeuf et al., 2007) and to LAI in the logarithmic relationships (Saatchi et al., 2007; Madugundu et al., 2008).

A multiple regression model is able to improve biomass estimates by combining surface reflectance, VIs, and biophysical variables (Zheng et al., 2004; Hall et al., 2006). Multiple regression analyses can be performed in three different ways. First, the multiple regression from the ordinary least-squares approach typically includes all explanatory variables regardless of the strength of the relationship between each variable and biomass. Second, stepwise regression analysis can be used to identify the most important explanatory variables for the final model based on their relative contributions. Third, the canonical correlation analysis can maximize the correlation among variables and align spectral bands with the variation in biomass (Heiskanen, 2006) and therefore allows multiple regression analysis in a simple and linear way (Cohen et al., 2003). A variety of multiple regression models have been used to estimate biomass (Lu, 2005; Saatchi et al., 2007; Powell et al., 2010; Eckert, 2012; Dube and Mutanga, 2015b), while the variables used vary among studies and it is still challenging to identify the optimal variables for a given study.

The machine learning algorithm or non-parametric approach has been widely used in recent biomass estimation efforts. Unlike regression methods, this approach can easily handle a large number of explanatory variables derived from remotely-sensed and ancillary data that are linearly or nonlinearly related to biomass. The commonly used machine learning algorithms include neural networks (Foody et al., 2001) and regression trees (John et al., 2018). The machine learning approaches have been established for estimating AGB using time series of MODIS reflectance with ancillary data (including climate and topographic variables) in large regional areas for forests in California (Baccini et al., 2004), Africa (Baccini et al., 2008), Russia (Houghton et al., 2007), and the conterminous U.S. (Blackard et al., 2018) and for grasslands in Mongolia and Inner Mongolia (John et al., 2018). Similarly, machine learning approaches, particularly random forest (Breiman, 2001), are also established using other optical satellite observations (such as Landsat TM/OLI, Sentinel-2 MSI, and WoldView-2) and spectral variables to calculate biomass at regional scales (Powell et al., 2010; Dube and Mutanga, 2015a; Karlson et al., 2015; Pandit et al., 2018). In general, the regression tree approach has advantages over other models in producing consistent estimates with smaller errors (Powell et al., 2010).

Allometric model is a physically-based approach and has been widely used for the estimation of forest AGB. It converts the measurements of tree variables (e.g., canopy crown size, crown depth, diameter at breast height or DBH, and tree height) to AGB based on field observations (TerMikaelian and Korzukhin, 1997). The allometric models for biomass estimation are in various forms (Pastor et al., 1984; TerMikaelian and Korzukhin, 1997), and AGB is most commonly estimated as a power function of DBH. Although the specific forms of allometric models vary with species and site, generalized allometric models have also been used for biomass estimation across large regions dominated by mixed species (Jenkins et al., 2003; Wirth et al., 2004).

Most vegetation attributes, particularly tree height and stem diameter, are hard to be retrieved from passive optical remote sensing data, but canopy properties can be easily detected by optical remote sensing data. A foliage-based allometric model was developed to associate AGB to foliage biomass that is a function of satellite-derived LAI (Zhang and Kondragna, 2006). As a result, the maximum LAI derived from 1 km MODIS LAI product (Myneni et al., 2002) was used to estimate AGB across the conterminous United States after the allometric models were established for needleleaf forests, broadleaf forests, and mixed forests, respectively (Zhang and Kondragna, 2006). Moreover, a biomass allometric model based on satellite data was also established with tree crown area. Allometric models are typically developed for coniferous and deciduous trees separately using field measurements and linear least squares regression. Tree crown area derived from the GO model (Soenen et al., 2010; Chopping et al., 2011), object-based classification (Rasmussen et al., 2011), or high-resolution satellite data (Hirata et al., 2014) is used to estimate forest biomass at regional scales based on general allometric models. This method was used to estimate biomass in Canada from SPOT multispectral data and was shown to be better than empirical approaches (NDVI or shadow fraction) (Soenen et al., 2010). Canopy structure parameters were also retrieved from both MODIS and MISR data for the estimation of biomass (Chopping et al., 2011).

Passive optical remote sensing provides perhaps the best tool for biomass estimation at regional to global scales because of its global coverage, multiple spatial resolutions, repeat visits, and cost-effectiveness. However, the satellite variables used in the developed empirical models (regression or machine learning approaches) for AGB estimation vary greatly across various regional environments and the models cannot be directly transferred across biomes and different vegetation phenological stages of satellite observations. Further, it is difficult to evaluate the relative performance of different models because of the complexity in AGB estimation. Satellite-based allometric model is an alternative approach to estimate AGB from vegetation structural variables. It is challenging is to accurately retrieve vegetation canopy attributes from passive optical remote sensing data. The spectral signal tends to saturate when biomass is high, leading to underestimation of high biomass density and overestimation of low biomass density.

5.2. Microwave remote sensing of biomass

Microwave remote sensing sensors include radiometers and scatterometers. The scatterometer is also referred to as an active sensor because it actively sends microwave pulses to the ground and measures the backscattered power, while the radiometer is referred to as a passive sensor because it passively observes the microwave radiance from the Earth and its atmosphere (Liu, 2015). Real aperture radar (RAR) is a scatterometer that measures the range from the sensor to the target. The resolution of RAR depends on the pulse width in the range direction and the distance from the antenna to the target in the azimuth direction, while the beam width of the radar depends on both wavelength and the antenna size. In 1951, Carl A. Wiley found that a long antenna could be synthesized through the frequency analysis of Doppler shift of the signal reflected to the radar by the objects (McCandless and Jackson, 2004). The synthetic aperture radar (SAR) was invented based on RAR using Wiley’s findings. The first civilian spaceborne SAR was the one onboard the SEASAT which was launched in June 1978. Although the SAR onboard SEASAT only operated for a short period of time (e.g.,
Earth's surface was mainly extracted from the SAR images. Radargrammetry can detect the vertical distribution of ground objects by measuring displacements of one object on two SAR images acquired with different view angles. Scientists have conducted studies of radargrammetry since the 1960s (LaPrade, 1963; Vastaranta et al., 2014). In addition to terrain elevations, the improvement of spatial resolution of SAR images provided radargrammetry a new opportunity to capture the 3D structures of forest (Vastaranta et al., 2012). The InSAR data from SIR-C/X-SAR mission and tandem ERS-1 and ERS-2 was a milestone in the monitoring of forest using SAR data. They advanced studies of SAR interferometry, especially interferometric coherence, on the estimation of forest AGB. PolInSAR and TomoSAR can directly detect the 3D structure of forest and provide a new technique for monitoring forest AGB. The new missions, including BIOMASS (Le Toan et al., 2011), NISAR (Rosen et al., 2016), and Tandem-L, have the work mode to acquire SAR data for PolInSAR and TomoSAR.

Spaceborne SAR can work at all time under all-weather conditions. Therefore, it has great potential for the estimation of forest AGB even over areas that are often covered by clouds or fog throughout the year. The estimation of forest AGB using SAR data was pioneered by two papers published in the early 1990s. Le Toan et al. (1992) observed the strong correlation of L- and P-band SAR backscattering coefficients with red pine biomass. Dobson et al. (1992) reported that the backscatter of polarimetric airborne SAR at P-, L- and C-bands was dependent on AGB of conifer forests. Following these two pioneering studies, many scientists estimated forest biomass using multi-band and multi-polarization SAR data (Beaudoin et al., 1994; Rignot et al., 1994; Harrell et al., 1995; Kasischke et al., 1995; Pulliainen et al., 1996; Ranson et al., 1997; Ranson and Sun, 2000; Sun et al., 2002; Ni et al., 2016). In addition to radar backscatter coefficients, interferometric coherence was also used to estimate forest AGB in the early 2000s (Luckman et al., 2000; Gaveau, 2002; Santoro et al., 2002; Santoro et al., 2007). These studies showed that the SAR backscatter increased almost linearly with increasing biomass and then gradually saturates at high biomass level. The biomass saturation level depends on radar frequency with ~200 tons/ha at P-band and ~100 tons/ha at L-band, while the backscatter at the C-band is much less sensitive to biomass (Shi et al., 2012). For example, Yu and Saatchi (2016) examined the relationship between ALOS/PALSAR HV backscatter and AGB for tropical forests and temperate conifer forests, and found different relationships and different levels of sensitivity to AGB among the biomes (Fig. 8). Neither the SAR backscattering coefficients nor the interferometric coherence is the direct measurement of forest AGB. Their strong correlation with AGB could be easily destroyed by environmental factors such as precipitation and soil moisture (Kasischke et al., 2011).

Forest AGB is directly determined by four parameters: tree density, tree height, tree DBH, and tree species. Forest spatial structures are characterized by the first three parameters. The direct measurement of forest spatial structure using PolInSAR and TomoSAR data is potentially a solution to overcome the saturation issue for the estimation of forest AGB. PolInSAR makes compound use of the dependence of penetration capability of microwave on both frequency and polarizations, while TomoSAR combines the penetration capability of microwave on frequency and view angles. Many studies have measured forest height using SAR imagery (Garestier et al., 2008; Minh et al., 2016; Khati et al., 2017). Currently, the data used in studies on PolInSAR and TomoSAR are acquired by airborne sensors. The advantages and disadvantages of PolInSAR and TomoSAR will be fully explored when the BIOMASS, NISAR, and Tandem-L data are available in near future.

5.3. Lidar remote sensing of biomass

Lidar is an active remote sensing technology which determines the distance between the sensor and the target using laser energy. Lidar is able to provide accurate information on the vertical structure of forests through recorded discrete returns or waveforms (Leišky et al., 2007;
Pang et al., 2008; Simard et al., 2011). Discrete return lidar systems record several returns from each laser pulse. Waveform lidar systems record a continuous waveform with the return signal as a function of time from the sensor to the target. Lidar data can be acquired from terrestrial, aircraft, and spacecraft lidar. These data can characterize the vertical information of forests at different scales varying from leaf, branch, individual tree, to large forest stands. Fig. 9 illustrates a typical workflow of deriving vegetation vertical structure and biomass from raw lidar data (Zhao et al., 2018b). Lidar data have also been used to estimate biomass of other ecosystems such as shrublands (Li et al., 2017) and grasslands (Wu et al., 2009).

The terrestrial laser scanning (TLS) sensor provides very dense point cloud data with millimeter intervals (Liang et al., 2016). After classification, TLS data can be separated into points from trunk, branch, and leaves for forests. Branch and foliage volume can then be estimated using shape information fitted from point cloud data (Hauglin et al., 2013; Stovall et al., 2017). This provides a non-destructive way to estimate AGB, even for allometric equation development (Kankare et al., 2014; Liang et al., 2016). A more recent study showed how to produce quantitative 3D models of branch and trunk using quantitative structural models (Disney et al., 2018). These models improved the estimates of AGB especially for irregular tree stems. Another recent study demonstrated the potential of this direct biomass estimation method for tropical forests (Rahman et al., 2017). Besides biomass estimation at the individual tree level, forest biomass or volume at the stand level has also been successfully estimated using single-scan TLS data (Astrup et al., 2014; Liang et al., 2016).

Airborne laser scanners (ALS) have been increasingly used for biomass estimation. Strong relationships between laser data and AGB have been shown in many forests because of the capability of ALS to capture canopy height and density accurately. Through segmentation of canopy height model or point cloud data with high density, the ALS data can be used to quantify height, crown width, and crown volume that in turn can be used to estimate biomass at the individual tree level (Popescu, 2007; Tao et al., 2014). With the increasing availability of multi-temporal ALS data, changes in tree level biomass can also be estimated, although the correction of negative height biases might be needed (Zhao et al., 2018b). Recently, lidar data acquired from UAVs have also been used to estimate AGB of forests (Messinger et al., 2016) and grasslands (Wang et al., 2017) at landscape scales.

More operational applications at the stand level or over large areas make use of low point density ALS data. The lidar-derived height and density metrics along with biomass data from field plots are often used to build biomass estimation models (Naesset and Gobakken, 2008; Zhao et al., 2009; Pang and Li, 2012). For example, Naesset and Gobakken (2008) investigated the relationship between forest biomass and canopy coverage using two groups of variables derived from lidar data which include quartile heights and crown densities. Zhao et al. (2009) estimated biomass using two scale-invariant models based on lidar-derived canopy height distributions and quintile functions. Pang and Li (2012) showed the benefits of species group stratification for component biomass estimation of stem, branch, and leaves. The airborne large footprint waveform data also led to reasonable biomass estimates for a variety of forest types (Lefsky et al., 1999; Drake et al., 2002). Lefsky et al. (1999) estimated biomass of a temperate deciduous forest using height indices from the Scanning LiDAR Imager of Canopies by Echo Recovery (SLICER) data. Drake et al. (2002) used the height of median energy from the Laser Vegetation Imaging Sensor (LVIS) data as a good index for biomass estimation in tropical forests. Recently, some studies also estimated biomass at the provincial or even national scale using ALS data (GOFC-GOLD, 2016; Price et al., 2017). Price et al. (2017) proved that ALS data could also be used to estimate biomass of trees outside forest. The GOFC-GOLD recommended the use of ALS data for biomass estimation in local efforts in reducing emissions from deforestation and forest degradation (REDD+) (GOFC-GOLD, 2016).

Lidar-based biomass surveys at regional scales may require less intensive field sampling than other remote sensing approaches.

Over the past decade, several spaceborne lidar sensors have been on-orbit. The main advantage of spaceborne lidar is the capability to collect data routinely for large regions or even globally. The data from the Geoscience Laser Altimeter System (GLAS) aboard the ICESat satellite that operated from 2003 to 2008 have been used to estimate forest AGB. Lefsky et al. (2005) first showed that it was feasible to estimate forest AGB using the GLAS waveform data. The GLAS data were then used to estimate biomass for pan-tropical forests (Baccini et al., 2008; Saatchi et al., 2011). The main limitations of spaceborne lidar
systems are the spatial discontinuity and short operation period. Therefore, these discrete footprint biomass estimates are usually fused with estimates from other remotely sensed data (e.g., MODIS, Landsat, and PALSAR) to generate spatially continuous biomass estimates (Baccini et al., 2008; Saatchi et al., 2011; Sun et al., 2011).

With the development of the lidar technology, more lidar data are becoming available from new generation systems such as the Advanced Topographic Laser Altimeter System (ATLAS) and the Global Ecosystem Dynamics Investigation (GEDI). The ATLAS onboard ICESat-2 launched in September 2018 is a micro-pulse, multi-beam photon counting lidar (Markus et al., 2017). Compared to waveform data, the returns based on the photon counting approach contain abundant noise from the atmosphere and even below the ground, making it difficult to extract canopies and the ground surface in vegetated areas. A few studies have been conducted to detect the noise and separate the signal. For example, a methodological framework was recently developed to retrieve ground and canopy height using data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne simulator of ATLAS (Pопescu et al., 2018). The MABEL data along with a local outlier factor algorithm showed good performance for not only lower noise rate with relatively flat terrain surface but also the high noise rate environment with relatively rough terrain (Chen, Pang, et al., 2019). These studies showed good performance for MABEL and simulated data, but further development of noise filtering is still necessary to explore vegetation applications for the new ATLAS data. A study comparing photon counting height metrics with both MABEL and discrete return lidar (DRL) in a savanna ecosystem (Gwenzi et al., 2016) showed moderate correlation between MABEL-derived height metrics and DRL-derived height metrics and weaker correlation between simulated ATLAS data with DRL indices. The GEDI system contains 3-laser system flying on the International Space Station (ISS), and the full waveform lidar has a circular footprint of ~25 m. Compared with GLAS system with 40 Hz frequency, GEDI will work with 242 Hz (Stavros et al., 2017). GEDI, launched on December 5, 2018, is the first spaceborne lidar mission that was specifically designed to study forests. GEDI will cover the geographical region between ~51. 6° North and 51. 6° South from the ISS. The availability of the lidar data from these spaceborne platforms will greatly facilitate the estimation of AGB at large scales.

5.4. Remote sensing of soil organic carbon

Remote sensing has also been used to quantify C stocks in soils, mainly for croplands and at relatively small spatial scales. The remote sensing of SOC builds upon laboratory spectral characteristics of soils in the Visible, NIR, and SWIR (VNIR-SWIR, 400–2500 nm) domain that have been studied since the mid-1990s (Ben-dor and Banin, 1995; Ben-Dor et al., 1999; Rossel et al., 2006). The base line height and shape of the soil spectral signatures are associated with soil physical features and the absorption bands are linked to soil chemical features. For example, clay minerals produce an absorption band centred at 2200 nm due to the combination of vibrations associated with the OH and OH-Al-OH bonds (Hunt et al., 1971) and organic matter induces changes in spectral shape and absorption bands due to vibrations of H-OH and C-H bonds linked to lignin and cellulose (Ben-Dor et al., 1997). Previous studies have then demonstrated that VNIR-SWIR spectral measurements acquired in laboratory conditions over soil samples can be used to accurately estimate several soil properties, such as soil organic matter (SOM) or SOC, Clay, Calcium Carbonate and Iron content (Chang and Laird, 2002; Shepherd and Walsh, 2002). For example, Shi et al. (2014) classified 1581 soil samples to clusters with different SOM content based on VNIR-SWIR spectra using a fuzzy clustering method, and found that the spectral reflectance of the soil clusters generally decreased with increasing SOM content (Fig. 10).

The mapping of soil properties from VNIR-SWIR imaging data has followed encouraging results of laboratory VNIR-SWIR spectroscopy and is achieved by developing either SpectroTransfer Functions (STFs) models based on multivariate regression models (Gomez and Lagacherie, 2016) or SCORPAN models to soil properties, climate and/or climate properties, organisms like flora and fauna and human activities, relief settings, parent material, age, and spatial coordinate n models based on machine learning techniques (McBratney et al., 2003). The STFs models link the soil properties measured by conventional laboratory analysis (dependent variables) and the VNIR-SWIR spectra (predictor variables). The SCORPAN models link the soil properties measured by conventional laboratory analysis (dependent variables) and several environmental variables with the potential to explain the dependent variables (e.g., climatic data, topographic data, VNIR-SWIR spectra and spectral index). The STFs models are mainly based on multivariate regression methods such as the partial least squares regression and support vector machine (Gomez et al., 2008; Stevens et al., 2010). The SCORPAN models are mainly based on regression and boosted regression trees (Wang et al., 2018). STFs functions are developed and applied only for bare soils as soil surface components (such as the dry and green vegetation) affect imaging VNIR-SWIR measurements (Bartholomeus et al., 2011). STFs functions are therefore developed for croplands during ploughing periods (Ben-Dor et al., 2002) and arid ecosystems (Jarmer et al., 2010). By contrast, SCORPAN models which use environmental variables indirectly linked to the SOC content and stock can be applied for croplands, rangelands, shrublands and grasslands. The SCORPAN models therefore have higher mapping coverage potential than STFs models.

The SOC content is a key soil property associated with soil physical, chemical, and biological fertility. It is also related to soil structure and porosity maintenance. The first SOC content mapping effort based on remotely sensed data and STFs models was conducted over croplands in Israel using reflectance data from an airborne hyperspectral sensor, the Digital Airborne Imaging Spectrometer (DAIS) (Ben-Dor et al., 2002). Then, several studies have successfully mapped SOC content at landscape and regional scales using VNIR-SWIR imaging data acquired by multispectral satellite sensors (Wilcox et al., 1994; Jarmer et al., 2010), hyperspectral Hyperion sensor aboard the Earth Observing-1 (EO-1) satellite (Gomez et al., 2008; Lu et al., 2013; Minu et al., 2017), and hyperspectral airborne sensors (Selige et al., 2006; Hbirkou et al., 2012). These studies had moderate to high performances in SOC content estimation, with the Ratio of Performance to Deviation (RPD) from 1.4 to 2 and the coefficient of determination (R²) from 0.5 to 0.8.

The SOC stock, the mass of C per unit area for a given depth (expressed in g C ha⁻¹), is a function of SOC content (expressed in g C kg⁻¹ or %), bulk density (expressed in g cm⁻³), and soil depth (expressed in cm) (Mishra et al., 2010). Some recent studies estimated SOC stock using STFs models with laboratory (Rossel and Hicks, 2015; Guo et al., 2019), field (Cambou et al., 2016), and imaging (Guo et al., 2019) VNIR-SWIR data. Two approaches were proposed to estimate SOC stocks with VNIR-SWIR spectroscopy. With the first approach, the SOC
stock is estimated directly using a STF which links a set of SOC stocks measured by conventional laboratory analysis and a set of VNIR-SWIR spectra. With the second approach, each variable of SOC stocks (e.g., soil bulk density) is estimated by SFTs and then the SOC stocks are estimated using an equation which links the SOC stock to these variables (Mishra et al., 2010). The estimation of SOC stock using laboratory VNIR-SWIR spectroscopy had reasonable performance ($R^2 = 0.65$, RMSE = $3.27 \text{ Mg C ha}^{-1}$). They also obtained moderate performances of SOC stock estimation using VNIR-SWIR imaging data ($R^2 = 0.42$, RMSE = 3.6 Mg C ha^{-1}).

Recent studies have mapped SOC content and stock using SCORPAN models and VNIR-SWIR satellite imagery data. For example, Wang et al. (2018) showed that the use of seasonal fractional cover data derived from VNIR-SWIR imagery data in association with classical environmental predictors (climate, lithology, relief and weathering covariates) improved the performance of SOC stock prediction. The VNIR-SWIR imagery data used for the estimation of SOC stock are mainly provided by MODIS (Mishra et al., 2010; Gray et al., 2015) and Landsat satellite sensors (Were et al., 2015; Yang et al., 2015a; Grinand et al., 2017; Schillaci et al., 2017; Wang et al., 2018). The VNIR-SWIR imagery data from MODIS was also used for SOC content mapping (Ratnakayeka et al., 2016; Somarathna et al., 2016). VNIR-SWIR imagery data can be used as spectral bands (Were et al., 2015; Ratnakayeka et al., 2016; Grinand et al., 2017) or to generate biophysical variables or Vs such as percent vegetation cover (Gray et al., 2015) and NDVI (Mishra et al., 2010; Ratnakayeka et al., 2016; Somarathna et al., 2016; Schillaci et al., 2017). These studies exhibited large variability in the performance of SOC stock estimation, with $R^2 = 0.4$ and RMSE = 3 Mg C ha^{-1} in semi-arid rangelands of eastern Australia (Wang et al., 2018) and $R^2 = 0.72$ and RMSE = $14.4 \text{ Mg C ha}^{-1}$ in southeastern Madagascar dominated by forest, crop, and pasture (Grinand et al., 2017). Long-term satellite data (e.g., MODIS) can also be used to examine the trends in SOC (or SOM) at regional scales (Chen, Chang, Xiao, et al., 2019).

6. Remote sensing of disturbance impacts on the terrestrial carbon cycle

Ecosystems can exhibit a range of responses to disturbances depending on disturbance type, severity (damage per area), timing, and ecosystem type, and these responses govern the type and success of remote sensing methods employed. Key milestones for using remote sensing to study disturbance effects on C cycling began with the early use of satellite imagery to document disturbed areas, including deforestation (Stone et al., 1983) and wildfire (Turner et al., 1994). The development of global time series of Vs with AVHRR (Los et al., 1994) allowed the combination of satellite data with C cycle models (e.g., CASA) (Field et al., 1995) and longer studies of disturbance effects over large areas (Hicke et al., 2003). The availability of free Landsat imagery facilitated the assembly of large-scale, fine-resolution disturbance datasets (Masek et al., 2008; Hansen et al., 2013) as well as disturbance datasets key for C studies such as burned areas from the Monitoring Trends in Burn Severity (MTBS) project (Eidenshink et al., 2007). The development and release of MODIS products (e.g., LAI, GPP/NPP) have provided useful data globally in studying C cycling. More recent significant advances include the use of lidar data to estimate C stocks with high certainty and the use of remote sensing to scale net C fluxes from EC flux towers. Remotely sensed data offer substantial opportunities to incorporate disturbance information into C cycle studies (Frolking et al., 2009; McDowell et al., 2015).

Multiple attributes of disturbance (e.g., severity, timing) and C cycling (fluxes and stocks) can be studied with remote sensing. The area of disturbance is an important attribute (Senf et al., 2017) and can include damage to ecosystems (e.g., stress or canopy damage) or plant mortality. Widespread plant mortality is the largest disturbance effect on the C cycle and therefore one of the easiest to study with remote sensing. The loss of canopy (fires, storms, insects, disease, harvest) or change in needle or leaf color (fires, insects, disease) allows quantification of disturbance extent and severity. Changes in vegetation or soil color following burning also facilitates detection. Substantial (wildfires) or more subtle (insects, drought) changes in canopy temperature during and after disturbances may aid with detection. Disturbances across large regions that include a mix of disturbance types have been mapped (Masek et al., 2008; Cohen et al., 2016). More muted ecosystem responses and therefore decreased accuracy can result from lower mortality severity (e.g., background tree mortality). Finer resolution data (e.g., Landsat and finer) are better for detecting smaller disturbances than coarser resolution imagery (e.g., AVHRR, MODIS), but data processing and storage requirements are substantially greater, precluding many analyses over broad regions. Remote sensing of disturbances that do not cause vegetation mortality (e.g., low or moderate drought or defoliation) is challenging. To address these challenges, methods that detect disturbances using imagery time series have been employed (Jepsen et al., 2009; Meigs et al., 2011a).

Quantifying the magnitude of vegetation response or area of damage within a pixel provides additional information beyond a binary classification of disturbed/undisturbed. Often, information on disturbance type and therefore the response of vegetation is available from expert knowledge or ancillary data (e.g., aerial surveys documenting insect and disease damage or burned area datasets) and can aid the estimation of the fraction that a pixel is disturbed. Drought typically has a relatively large spatial footprint, and most vegetation within a satellite pixel is likely to experience similar stress. Some insect outbreaks (e.g., bark beetle outbreaks) kill trees, and therefore anomalous signals (from predisturbance conditions) can be translated into an estimate of the number of trees killed (Meddens and Hicke, 2014). The MTBS dataset classifies burn severity into low, moderate, and high using Landsat imagery (Eidenshink et al., 2007). Other disturbance types, such as insect defoliation, prove more challenging to determine damage severity because a given reflectance signal may result from widespread low damage or substantial damage over a smaller area. The amount of damage within a pixel also determines the detectability of a disturbance. Meddens et al. (2013) found that accuracy of classifying trees killed by bark beetles increases with fraction of pixel occupied by killed trees. Tradeoffs exist between spatial resolution and extent: very fine spatial resolution imagery (e.g., 1–2 m) can detect individual killed trees but have limited extent (e.g., Hicke and Logan, 2009), whereas coarse-resolution imagery requires larger disturbances within a pixel but has global extent.

The timing and evolution of a disturbance are other important attributes. Repeated remotely sensed observations of a disturbance are often available either on a regular basis or for select times. Temporal resolutions can range from daily to yearly depending on the revisit time of the sensor and objective of the study. For example, active fire and burned area maps are produced globally as both daily (MOD14A1 and MYD14A1) and monthly (MCD64A1) MODIS products, respectively (Justice et al., 2002), drought monitoring is available at approximately two-week intervals (Hargrove et al., 2009), and insect outbreaks have been mapped at annual resolution (Meddens and Hicke, 2014). Continental (Zhao et al., 2018a) and global (Hansen et al., 2013) time series maps of changes in forest cover have been produced from Landsat imagery. Spatiotemporal dynamics of individual events, or parts of events, can also be studied with remotely sensed data. Landsat time series are particularly valuable for slow-moving disturbances such as insect or disease outbreaks (Meigs et al., 2011a; Meddens and Hicke, 2014). Remote sensing data are useful for estimating not only the immediate effects of disturbance but also the recovery rates of stocks and fluxes. For example, the recovery of GPP following wildfires (Hicke et al., 2003) and bark beetle outbreaks (Bright et al., 2013) was studied using LUE models along with annual time series of AVHRR and MODIS imagery, respectively.

The impacts of disturbances on C fluxes can be estimated by combining satellite observations with models. LUE models have been used
to compare predisturbance GPP and NPP estimated with satellite reflectances to postdisturbance values, including monitoring recovery rates (Hicke et al., 2003). A bark beetle outbreak caused a 5–26% decrease in MODIS-derived GPP, depending on mortality severity (Bright et al., 2013). Global fire emissions (C fluxes from combustion) were estimated to be 2.2 Pg C year\(^{-1}\) during 1997–2016 by combining satellite-driven model estimates of C stocks and satellite-derived maps of burned area (van der Werf et al., 2017) (Fig. 11a). The white lines indicate the isolats, including tropical storm (TS), hurricane category 1 (C1), and hurricane category 2 (C2). (c) Drought effects (right column; precipitation anomalies from 1970 to 1999 means, mm) on annual NEE (left column; g C m\(^{-2}\) yr\(^{-1}\)) in 2002 (top row) and 2006 (bottom row) estimated by upscaling eddy flux covariance measurements with satellite remote sensing (Xiao et al., 2011a). (d) Integration of lidar data and aerial imagery to estimate the percentage of carbon stocks in trees within an area of a mountain pine beetle outbreak (Bright et al., 2012b).

To illustrate remote sensing applications to assess carbon cycle impacts of different disturbance types with different methods across a range of spatial scales, (a) Use of satellite imagery and carbon cycle modeling to estimate mean annual combustion emissions from wildfires (g C m\(^{-2}\) year\(^{-1}\)), 1997–2016 (van der Werf et al., 2017). (b) Anomalies of annual NEE in 2006 relative to the 6-year period 2001–2006, indicating that hurricane Katrina led to a net C release into the atmosphere (Xiao et al., 2011a). The white lines indicate the isolats, including tropical storm (TS), hurricane category 1 (C1), and hurricane category 2 (C2). (c) Drought effects (right column; precipitation anomalies from 1970 to 1999 means, mm) on annual NEE (left column; g C m\(^{-2}\) yr\(^{-1}\)) in 2002 (top row) and 2006 (bottom row) estimated by upscaling eddy flux covariance measurements with satellite remote sensing (Xiao et al., 2011a). (d) Integration of lidar data and aerial imagery to estimate the percentage of carbon stocks in trees within an area of a mountain pine beetle outbreak (Bright et al., 2012b).

Estimating the amount of C stocks within disturbance areas has been accomplished with remote sensing in multiple ways (Frolking et al., 2009). Bright et al. (2012b) overlaid airborne optical imagery (for mapping disturbance area) on airborne lidar data (for estimating C stocks) to quantify the amount of C in lodgepole pines killed by mountain pine beetles (Fig. 11d). Satellite imagery is needed for larger disturbance areas. Chambers et al. (2007) estimated the number of trees and associated C stocks affected by hurricane Katrina using spectral mixture analysis and Landsat and MODIS imagery. By combining Landsat imagery and field observations, Huang et al. (2010) estimated that drought-induced mortality of piñon-juniper woodlands resulted in a loss of 4.6 Tg C in an area in the southwestern US in the early 2000s. Hicke et al. (2013) used Landsat-based MTBS burn severity data and insect data from aerial surveys in the western US together with a biomass map produced using MODIS imagery (Blackard et al., 2008) to estimate the amount of C in trees killed by wildfires and bark beetle outbreaks.
Different sensors provide different capacities for studying disturbance effects on the C cycle. Sensors in the visible through shortwave infrared portions of the electromagnetic spectrum (e.g., Sentinel, Landsat TM/ETM+/OLI, AVHRR, and MODIS) are useful for quantifying the extent, severity, and timing of disturbances. Such sensors can detect changes in greenness as represented by NDVI, decreases in water content following plant stress or death, or changes in canopy (leaf area or color). Some of these satellites/sensors (e.g., Landsat, AVHRR, MODIS) have long time records, facilitating the study of a longer disturbance or ecosystem recovery. For instance, Meddens and Hicke (2014) used 16 years of Landsat imagery to document the spatio-temporal characteristics of a mountain pine beetle outbreak in Colorado, and Hicke et al. (2003) quantified NPP responses following fire disturbances using 17 years of AVHRR data. Emitted longwave radiation can also be used to identify disturbances. Plant stress and mortality results in a reduction or loss of cooling associated with transpiration, thereby raising surface temperatures (Heller, 1968; Hesslervá et al., 2018). The MODIS LST product was combined with EVI to produce a Disturbance Index that takes advantage of this change in surface temperature (Mildrexler et al., 2007). Because of nonlinear relationships between canopy closure and biomass (or C) as well as confounding influences of green understory, challenges exist for using shortwave reflectances to estimate biomass following disturbances. Lidar data can facilitate biomass estimates (Frolking et al., 2009). Returns from ground-based, airborne, and space-based lidar systems (in the visible and NIR portions of the electromagnetic spectrum) has been used to estimate canopy height and volume (Dolan et al., 2011), and the resulting biomass estimates along with disturbance area can then be used to quantify the loss of C stocks (Bright et al., 2012a). For example, C stocks and recovery were assessed by mapping fires with Landsat imagery and estimating biomass with airborne lidar (Bolton et al., 2015).

Despite the significant contribution of remote sensing to advances in the understanding of disturbance impacts on the C cycle, important challenges remain. Maintaining the continuity of existing long-term satellite records, especially Landsat and MODIS, is critical for providing additional understanding of this topic. Studies of future disturbances, trends in disturbances and their changes through time, and recovery following disturbances will benefit from continuing these records. Refinement and development of global, wall-to-wall mapping of disturbances at 30-m spatial resolution and finer will increase the capability to separate disturbance types, leading to better estimates of immediate and legacy impacts on the C cycle. Imagery at fine spatial resolution and broad spatial extent is needed to map diffuse, low-severity disturbances that are nevertheless widespread across the landscape, such as background tree mortality (van Mantgem et al., 2009) and disease outbreaks (Sturrock et al., 2011). Continued development of translating disturbance area into C cycle variables (stocks and fluxes) is needed.

7. Uncertainty and validation of carbon flux and stock estimates

7.1. Uncertainty

Estimates of C fluxes and stocks based on remote sensing can have significant uncertainty. One important source of uncertainty in C flux/stock estimates is the uncertainty of the remote sensing data products. For example, the satellite-derived surface reflectance, vegetation indices, SIF, and LAI have several sources of uncertainty such as atmospheric effects (e.g., Rayleigh scattering, ozone, aerosol, and water vapor content), retrieval errors, cloud contamination, and sensor degradation (van Leeuwen et al., 2006; Fang et al., 2012). Besides uncertainty associated with remote sensing data, C fluxes and/or stocks estimated from modeling approaches have three other main sources of uncertainty: other input data (e.g., meteorological data), model structure (e.g., incomplete or flawed underlying processes and assumptions), and model parameters (e.g., imperfectly or poorly defined parameters due to lack of information). For example, the uncertainty in meteorological data (Zhao et al., 2006), satellite-derived LAI data (Liu et al., 2018b), and land cover maps (Quaife et al., 2008; Xiao et al., 2011b; Zheng et al., 2018) can lead to significant uncertainty in regional C fluxes from LUE or diagnostic models. The uncertainty of model parameters can also lead to significant uncertainty in C fluxes in LUE and diagnostic models (Hilton et al., 2014; Xiao et al., 2014b). The biomass estimates have several sources of uncertainty: biases in field sampling, errors in plot locations, measurement errors in DBH and height, misrepresentation of allometric relationships or processes in models, errors in remotely sensed data, and imperfect retrieval methods (Lu et al., 2012). Friedl et al. (2001) attributed the uncertainty of remotely sensed data to three main sources: (1) errors introduced during the acquisition process of the observations, (2) errors generated by the processing of the remotely sensed data; (3) errors resulting from the scale mismatch between the grid cells of remotely sensed data and the scale of the ecological variables or processes of interest on the ground.

The uncertainty in remote sensing data products and the resulting C flux estimates can obscure the analysis or comparison of the magnitude, interannual variability, and long-term trends in vegetation productivity and C dynamics. As mentioned earlier, satellite-derived VIs are widely used as proxies of GPP, while LUE models, machine learning approaches, and diagnostic process-based models are more routinely used to quantify GPP. We used the GIMMS3g NDVI dataset based on AVHRR data (Pinzon and Tucker, 2014), the EVI dataset based on MODIS data (Hueet al., 2002), the MODIS GPP product based on a LUE model (Running et al., 2004), GPP data from a diagnostic process-based model – BEPS (Liu et al., 2018b), and GPP data from a machine learning approach (EC-MOD) (Xiao et al., 2014a) to examine the trends in vegetation productivity in China from 2000 to 2014 (Fig. 12). All these data products exhibited increasing trends, indicating that vegetation productivity had been increasing due to various factors (e.g., climatic warming, CO₂ fertilization, afforestation, and improved agricultural management practices). Despite the general agreement in the trends, the rate of increase was different between the two NDVI products.
(GIMMS3g NDVI and MODIS EVI) and among different GPP products (MODIS-GPP, BEPS, and EC-MOD), and there were also large discrepancies in total annual GPP among the three GPP products. Reducing the uncertainty in various remote sensing data products is essential for better understanding the dynamics of ecosystem C fluxes.

Similarly, the C stock maps based on different remote sensing data and approaches can exhibit significant discrepancies. For example, several forest AGB maps have been developed for the conterminous U.S. (Fig. 13). Some maps are solely based on optical remote sensing data. For example, Zhang and Kondragunta (2006) developed an AGB map for North America using MODIS data streams (e.g., LAI, land cover, vegetation continuous fields) and foliage-based generalized allometric models. Blackard et al. (2008) developed an AGB map with 250 m resolution for the U.S. from MODIS data (surface reflectance, NDVI, and percent tree cover), topographic variables, climate, and plot-level biomass data from the U.S. Forest Service’s Forest Inventory Data (FIA) Program using a machine learning approach. Some other maps are based on optical and microwave remote sensing data. Wilson et al. (2013) developed a forest AGB map using FIA field data, environmental factors (e.g., temperature, precipitation), MODIS-derived vegetation phenology, and tree cover data based on Landsat. Some other studies, however, combined SAR and/or lidar data with optical remote sensing data. For example, Kellndorfer et al. (2013) developed a forest AGB map using biomass data from the USDA Forest Service FIA Program, high-resolution InSAR data from the Shuttle Radar Topography Mission (SRTM), and optical remote sensing data from Landsat ETM+ using an empirical modeling approach. The NASA-CMS map (Saatchi et al., 2012) is based on a multi-scale approach along with a variety of

Fig. 13. Forest aboveground biomass (AGB) carbon stock of the conterminous U.S. based on different datasets: (a) the Blackard et al. map; (b) the Carbon Monitoring System (CMS) map; (c) the Kellndorfer et al. map; (d) the Wilson et al. map; (e) the Zhang et al. map; (f) the total forest AGB carbon stock of the five products.
geospatial layers (e.g., ICESat GLAS, MODIS, PALSAR, climate, topography, Landsat disturbance, and Landsat LAI). The ICESat GLAS waveforms were linked to FIA-measured biomass via the Lorey’s Height metric, and the biomass converted from waveforms were then used as training data for statistical models of biomass (Saatchi et al., 2012). Four maps (Fig. 13a–d) had the highest AGB in the Pacific Northwest and intermediate values in the Appalachian Mountains and the Rocky Mountains regions, while the Zhang and Kondragunta map had similar AGB values in the Pacific Northwest and the Appalachian Mountains. The CMS map had higher AGB in the eastern U.S. and the Rocky Mountains than the other four products. The total AGB C stock ranged from 17.2 to 28.3 Pg C (Fig. 13f). The Zhang and Kondragunta product had the highest total C stock, and the CMS product also had much higher C stock than the other products. Quantifying and reducing the uncertainty in remote sensing C stock products are essential for assessing regional or global C storage and informing management and climate policymaking.

Quantifying and reducing uncertainty in C flux and stock estimates remain a grand challenge. It is important to quantify the full uncertainty of these estimates by considering various sources of uncertainty. Future efforts are needed to pursue the quantification of the full uncertainty in C flux and stock estimates. Meanwhile, it is equally important to reduce the uncertainty in the estimates of C fluxes and/or stocks by using remotely sensed data with higher quality and finer resolution and better approaches.

7.2. Validation

The remote sensing of the terrestrial C cycle typically requires calibration and validation. Both in situ measurements and satellite/airborne data have been used to assess the accuracy of the C flux/stock estimates. C flux estimates have been typically validated using in situ measurements such as flux data from eddy covariance flux towers (Heinsch et al., 2006; Liu et al., 2018b) and NPP measurements. EC flux measurements from flux networks (e.g., FLUXNET, AmeriFlux, Fluxnet-Canada, EUROFLUX, USCC) (Wofsy et al., 1993; Baldocchi et al., 2001; Xiao et al., 2013) are perhaps the most accurate and most widely used data for validating carbon flux estimates based on remote sensing methods. For example, flux tower data from AmeriFlux and Fluxnet-Canada were used to develop and validate the data-driven approach based on MODIS data streams for the generation of the gridded, 1-km carbon flux product (GPP, ER, and NPP) over North America (Xiao et al., 2014a) (Fig. 14). Besides the flux networks (e.g., AmeriFlux and FLUXNET), measurements have from other networks have also been to validate carbon fluxes. The Spectral Network (SpecNet) integrates remote sensing with carbon flux measurements (Gamon et al., 2010). The ES1309 (Innovative optical Tools for proximal sensing of ecophysical processes or OPTIMISE) Cost Action network aims at exploring optical observations from drones and airborne sensors with high spectral, spatial, and temporal resolutions to explore the links among light use, plant physiology and ecosystem functioning and to validate satellite missions such as Sentinel and the proposed FLuorescence EXplorer (PLEX) missions. The C stock (AGB or SOC) estimates are typically validated using plot-based C stock data (Lefsky et al., 1999; Blackburn et al., 2008; Sun et al., 2011).

However, the observations from satellite instruments often have medium to coarse resolution ranging from a few hundred meters to tens of square kilometers. Therefore there could be a moderate to large scale mismatch between the footprint of in situ measurements and the grid cell of satellite data, which makes it challenging to directly evaluate remotely sensed data using in situ measurements. For example, the ground area that a MODIS grid cell stands for is much larger than a field plot for in-situ LAI measurements, and to evaluate the MODIS-based LAI data products, gridded LAI estimates derived from finer-resolution satellite imagery (e.g., Landsat) have been used to bridge the gap between in situ measurements and MODIS-based estimates. A field plot is close to the grid cell of finer-resolution satellite data (e.g., Landsat) or airborne data, and the in situ measurements are used to calibrate/validate the finer-resolution satellite (or airborne) estimates that will then in turn be used to evaluate the estimates from medium- or coarse-resolution satellite data. This kind of calibration and validation framework was proposed to evaluate multiple MODIS data products (e.g., GPP/NPP, land cover, LAI) using field measurements in the Bigfoot Project (Cohen et al., 2006) (Fig. 15). For example, the MODIS GPP and NPP products were validated using 30-m resolution GPP and NPP estimates driven by the Biome-BGC model and Landsat-derived LAI data (Turner et al., 2006). High-resolution satellite data and fine-resolution airborne and/or UAV data can bridge the gap between field plots or flux towers and satellite grid cells and help validate and evaluate satellite-derived C flux/stock estimates.

Field campaigns are an important component of NASA’s Earth Observing System (EOS) and the evaluation and validation of remote sensing of the terrestrial C cycle. NASA has initiated a series of field campaigns over the last three to four decades. For example, the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) (Sellers et al., 1988) was conducted at and around the Konza Prairie in Kansas in 1987 and 1989. The objectives of FIFE were to understand the processes regulating the exchange of energy, water, and carbon between the land surface and the atmosphere, develop and test remote sensing methods, and understand how to scale information and processes from the pixel or ecosystem level to regional scales. The Boreal Ecosystem-Atmosphere Study (BOREAS), a joint U.S.-Canadian effort, had field deployments in 1994 and 1996, aimed at quantifying the exchanges of carbon, water, and energy between the boreal forest and the atmosphere (Sellers et al., 1995). BOREAS collected and compiled remote sensing and ground-based (e.g., fluxes) observations. The Large Scale Biosphere-Airmosphere Experiment in Amazonia (LBA), one of the largest coordinated scientific endeavors in the tropics, started in 1998 (Nobre et al., 2001). One of the themes of LBA is carbon storage and exchange, and one of the strategies is to scale processes from small scales to the entire basin scale using models and remote sensing. The latest NASA field campaign is perhaps the Arctic-Boreal Vulnerability Experiment (ABoVE) in Alaska and western Canada that started in 2015 and is planned to last for 8 to 10 years (Kasischke et al., 2010). ABoVE seeks a better understanding of the vulnerability and resilience of arctic and boreal ecosystems to the changing environment. These field campaigns can help develop and refine methods for spatial and temporal scaling of field observation and evaluating remotely sensed data products.

8. Prospects for remote sensing of the terrestrial carbon cycle

8.1. Remote sensing of carbon fluxes

Key challenges and opportunities with the use of satellite-derived VIS in approximating or estimating ecosystem C fluxes involve the extension of the long time series data record, amidst ever increasing space and time fidelity of the satellite data, including reduced uncertainties in geolocation, radiometry, and snow and cloud detection (Tucker et al., 2005). The continuity and extension of the satellite VI data record and other land products have recently been provided by the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard NOAA-20, the First Joint Polar Satellite System (JPSS-1) launched in November 2017 (Justice et al., 2013). The NASA/NOAA JPSS series will further extend our capabilities to examine long-term trends in ecosystem C fluxes and/or stocks. Geostationary data at 1 km pixel resolutions such as HimawariACHI (Advanced Himawari Imager) and GOES-R ABI (Advanced Baseline Imager) are now becoming widely available at sub-hourly time intervals and enabling improved precision of phenological time factors (e.g., budburst, full leaf expansion, dormancy) into ecosystem production models. Better understanding how flux tower data and VISs converge (e.g., Huang et al., 2019) will further reveal the underlying mechanisms
of the C cycle (e.g., phenology and climate drivers) and help interpret satellite-derived greenness measures (Restrepo-Coupe et al., 2016).

Satellite phenology products, based on normalized bidirectional adjusted reflectances and a 2-band EVI (EVI2) have been developed for MODIS (MCD12Q2) and extended to VIIRS (Zhang et al., 2018a). There are also phenology metrics being derived from Landsat at 30 m spatial resolution (Melaas et al., 2016) enabling improved spatial-temporal scaling within heterogeneous landscapes, and ready upscaling of surface C measurements to larger landscape units and regional to global studies, which can constrain C cycle models. Ground-based phenocam networks can provide independent sources of land surface phenology information for comparisons and potential validation with satellite phenology products (Richardson et al., 2018).

Additionally, VIs can also play an important role in validating ecosystem responses to climate change. For example, Ichii et al. (2007) used an ecosystem model, BIOME-BGC, to determine which rooting depth could best estimate GPP based on the consistency between simulated GPP and satellite-based EVI seasonality and thereby to better simulate C, water, and energy cycles of tropical forests. Thus, although remote sensing can only directly monitor some topsoil properties, it can help parameterize models, and with extrapolated climatic data, make it possible to estimate whole ecosystem C exchange under conditions not yet encountered.

The relationships between SIF and VIs and their relationships with photosynthesis (e.g., Li et al., 2018b, 2018c) should be examined at various timescales to exploit the complementary use of VIs with SIF and to better understand the interplay between direct photosynthesis process measures (SIF) and photosynthetic capacity measures (VIs). Plants respond to the dynamics of environmental variables through stomatal closure and other diurnal adjustments that cannot be easily sensed by VIs, and are more likely captured by SIF measurements. The Orbiting Carbon Observatory-3 (OCO-3) recently launched on May 4, 2019 has the diurnal but temporally fragmented sampling capability and its measurements will help understand the diurnal cycles of SIF and photosynthesis. At longer time scales, plants may increase leaf area and their photosynthetic capacity under favorable environmental conditions, and reduce LAI under stress when leaves are expensive to produce and maintain. Thus, at longer time scales, there would be a convergence of satellite greenness signals with biologic and structural canopy properties. Future research is needed to reveal whether SIF is able to detect plant stress almost immediately and can be effectively used for temporal remote sensing of vegetation photosynthesis.

The discrete SIF soundings from OCO-2 and OCO-3 can be used to generate global, gridded-SIF estimates (e.g., GOSIF) (Li and Xiao, 2019) with finer spatial and temporal resolutions using spatially and temporally continuous MODIS and meteorological data along with data-driven approaches. Moreover, newly operating and upcoming missions such as TROPOMI and the Fluorescence Explorer (FLEX), respectively, will provide gridded SIF observations. The TROPOMI instrument aboard Sentinel-5P that was launched in October 2017 provides continuous SIF retrievals at 0.2° spatial resolution globally (Guanter et al., 2015a; Kohler et al., 2018). The TROPOMI SIF product promises to lead a new breakthrough in the application of SIF for the monitoring of vegetation C fluxes. The FLEX that is anticipated to be launched in 2022...
will map SIF globally at the finest spatial resolution (300 m) of all existing and upcoming spaceborne instruments (Drusch et al., 2017). In addition, a series of geostationary satellites are scheduled for launch in the 2019–2021 timeframe, and will provide unprecedented SIF measurements in sub-daily time intervals over some regions in Europe (Sentinel-4) and the Americas (TEMPO and GeoCARB). The variety of SIF datasets have the potential to open up a new era in mapping terrestrial photosynthesis. However, further work is needed in order to develop methods to estimate GPP from SIF observations. These models will have to deal with, at least, the effect of canopy structure effects on SIF data, the physiological relationships between SIF, photosynthesis and non-photochemical quenching, and the upscaling from instantaneous and clear-sky SIF data to the diurnal and all-sky conditions in which GPP estimates are typically reported.

The growing number of EC flux sites globally, especially more sites in under-represented ecosystems and regions, is anticipated to benefit the upscaling of C fluxes to regional to global scales based on machine learning approaches. A tremendous amount of new remotely sensed data can be used to upscale ecosystem C fluxes. For example, new satellite data products such as gridded SIF products derived from OCO-2 (e.g., GOSIF) (Li and Xiao, 2019), gridded SIF observations from TROPOMI (Kohler et al., 2018) and FLEX, and gridded soil moisture products from the Soil Moisture Active Passive (SMAP) mission (Brown et al., 2013) will potentially improve the upscaling of flux observations. The integration of the Landsat archive and Sentinel data will greatly improve the frequency of cloud-free observations, which can make it possible to upscale C fluxes from towers to regional scales with finer spatial resolution (e.g., 30 m). The fusion between Landsat and Sentinel data with higher spatial resolution and MODIS data with more frequent coverage could lead to reflectance and VIs with higher temporal and spatial resolution that will help capture fast responses of vegetation to stress conditions (e.g., droughts) and thus the model capacity to capture the detailed seasonal variations and abrupt changes. Other potential directions in the machine learning approaches include how to better incorporate management and disturbance information and how to quantify and reduce the uncertainties in upscaled fluxes.

The column CO₂ concentrations observed by satellite missions such as GOSAT, OCO-2, and GOSAT-2 are expected to be more frequently used to quantify NBP at regional to global scales, while reducing the uncertainty in the resulting NBP estimates is critical for assessing C budgets and informing climate policy. The launch of high-resolution imaging CO₂ sensors in a few years (Polonsky et al., 2014; Pinty et al., 2017) will allow monitoring the plumes of CO₂-rich or CO₂-depleted air. Anthropogenic emissions are a primary target but they will also provide novel information about natural fluxes. However, they will further challenge the quality of the transport models that will have to properly simulate these plumes within the inverse systems. Merging atmospheric inversion with Numerical Weather Prediction data assimilation could be a natural way forward.

Besides the satellite missions mentioned above, hyperspectral imagery from recently launched and forthcoming satellites is expected to benefit the estimation of C fluxes. The recently launched and forthcoming sensors, such as PRISMA (Prototype Research Instruments and Space Mission technology Advancement) (launched in March 2019) (Stefano et al., 2013), SBG (Surface Biology and Geology) (previously Hyperspectral InfraRed Imager, HyspIRI) (Lee et al., 2015a), and EnMap (Environmental Mapping and Analysis Program) (Guanter et al., 2015b), will also produce an increasing amount of hyperspectral data.

Fig. 15. A framework for calibrating and validating carbon flux and stock estimates derived from satellite remote sensing using in situ measurements. Finer-resolution satellite or airborne data can bridge the gap between in situ measurements and medium/coarse resolution satellite data. (Reproduced from Cohen et al., 2006)
with spatial resolution of 20–30 m, 30 m, and 60 m, respectively. In addition, new CubeSat-type constellations of dozens or hundreds of small satellites in orbit will potentially provide land observations with high spatial and temporal coverage that will be useful to C cycle studies, although the processing and inter-calibration of these observations can be a challenge.

Integrating satellite-based data products and process-based models will continue to be an effective way to improve our understanding of terrestrial C cycle processes. First, satellite-based data products need to be improved by reducing their uncertainties. Second, some key variables such as disturbance history, which we currently face difficulties to estimate globally, will benefit process-based modeling. Third, methods of model and data integration, including model parameter optimization and data assimilation, need to be further explored. These model and data integration studies mostly rely on a single satellite-based product. Use of multiple satellite-based products can likely refine terrestrial process-based models. Currently, many terrestrial process-based prognostic models are used to evaluate regional to global terrestrial C budget (Huntzinger et al., 2012; Lovenduski and Bonan, 2017) and show large model-by-model differences in estimated terrestrial C fluxes. With the aid of improved and new satellite-based terrestrial products and integration techniques with process models, these model-by-model differences can be potentially reduced.

8.2. Remote sensing of carbon stocks

Passive optical remote sensing, microwave remote sensing, and lidar remote sensing will continue to be used for AGB estimation. Passive optical remote sensing will continue to be one of the most important data sources for AGB estimation because of its high spatial and temporal resolution and spatially and temporally continuous coverage. Recently, the NASA Harmonized Landsat and Sentinel-2 (HLS) product has been operationally produced in near real time by combining Landsat-8 and Sentinel-2 observations (Claverie et al., 2018), which allows us to monitor vegetation dynamics at a 30-m field scale with an interval of fewer than 5 days across the globe. Thus, the HLS time series could be used to extract an optimal time series for estimating AGB, which will enhance the capability of consistent AGB estimation from local to global scales. However, the establishment of empirical models or deep machine learning algorithms based on passive optical remote sensing requires a large set of reliable training data representing a broad range of biomass values, while such training data are usually insufficient at regional or global scales. There is a need for the generation of large AGB samples from in situ measurements, very high-resolution passive remote sensing data (e.g., QuickBird, IKONOS, and UAVs), and lidar measurements. Combining HLS data, satisfactory training samples, and deep machine learning algorithms will significantly improve the performance of AGB estimation. The saturation issue in biomass estimation using passive optical remote sensing is expected to be at least partly solved by the fusion of passive optical remote sensing with lidar and microwave remote sensing data.

It has been nearly three decades since the SAR data were initially used for the estimation of forest AGB. The accurate mapping of forest biomass with SAR data at regional scales faces three challenges: saturation problems, terrain effects, and scale issue between the size of field sampling plot and the basic unit of regional mapping of forest AGB. The saturation problem in biomass estimation using radar backscatter intensity may be improved or solved by incorporating forest spatial structure information derived from InSAR data (Sun et al., 2011) or other data such as optical stereo images (Zhang et al., 2017). Using the three-dimensional information derived from InSAR, Radargrammetry, and optical stereoscope to estimate forest height or to improve the biomass estimation from SAR data will remain an active study area. For example, the digital surface model (DSM) from TanDEM-X data can be used to monitor forest biomass changes (Karila et al., 2019). If the digital terrain model (DTM) exists, the InSAR DSM can be used to generate canopy height model (CHM) or biomass maps. NASA’s NISAR, to be launched in 2021, will provide global L-band InSAR data for biomass mapping and forest disturbance monitoring. As mentioned earlier, the PolInSAR or TomoSAR data, especially at L and P bands, can be used to retrieve the 3D structure of forest canopy directly without DTM. With the launch of TanDEM-L and BIOMASS (Quegan et al., 2019), both scheduled in 2022, the PolInSAR and TomoSAR data will be widely available to users, and therefore the effects of complex terrains on PolInSAR or TomoSAR data can be further explored. The terrain effect is a barrier for accurate biomass estimation based on SAR data. The development of theoretical models and simulations will likely help identify a proper solution to terrain effects (Ni et al., 2018). One solution to the scale issue could be the synergy of SAR data with other types of data such as lidar (Qi and Dubayah, 2016) and stereo imagery (Zhang et al., 2017).

Lidar sensors and systems have evolved dramatically. TLS is becoming more portable and is being integrated with mobile platforms (e.g., mobile laser scanning or MLS, backpack laser scanning or BLS). ALS data have the tendency to be integrated with data from other sensors like hyperspectral sensors (Asner et al., 2007; Kampe et al., 2010; Cook et al., 2013; Pang et al., 2016). With the decrease of the data acquisition cost, ALS is being applied for biomass estimation (Price et al., 2017) or sampling at large scales (Matasci et al., 2018). With more spaceborne lidar systems on-orbit, the expendability and generalizability of the AGB estimation models based on lidar data will need more consideration for operational regional or global biomass mapping efforts. The recently launched GEDI will provide estimates of forest biomass over broad regions. The GEDI will produce high resolution laser ranging observations of the 3D structure of the Earth’s surface using a geodetic-class lidar laser system with a 25 m footprint. The integration of spaceborne lidar, SAR, and passive optical remote sensing data is anticipated to provide seamless, more accurate AGB estimates at the global scale.

Passive optical remote sensing will continue to be used for the mapping of SOC at landscape to regional scales. The recent launch of the Sentinel-2A and Sentinel-2B satellite sensors by the European Space Agency (Bailarion et al., 2012) will produce an increasing amount of multispectral VNIR-SWIR data over the world with high revisit frequency (5 days) and spatial resolution from 10 to 20 m, which could be used in SCORPAN models for SOC content and stock mapping. This high revisit frequency would allow the acquisition of Sentinel-2 data during both periods either with adequate vegetation coverage and periods with high coverage of bare soils. Hyperspectral imagery from recently launched and forthcoming satellites is expected to benefit the estimation of SOC at regional scales. The launch of forthcoming sensors, such as PRISMA (Stefano et al., 2013), SBG (Lee et al., 2015a), and EnMap (Stufler et al., 2007) satellite sensors will also produce an increasing amount of hyperspectral VNIR-SWIR data with spatial resolution of 20–30 m, 30 m, and 60 m, respectively, which could be used for SOC content and stock mapping.

8.3. Quantifying and reducing uncertainty in carbon flux and stock estimates

Uncertainty information of carbon fluxes is essential for carbon cycle studies. First, modeled fluxes with uncertainty bounds can facilitate the direct comparison between modeled and observed fluxes/stocks. Second, the quantification of uncertainty will also facilitate the intercomparison of different approaches (e.g., modeling, inventory, atmospheric inversions). Third, the availability of uncertainty information will help interpret the dynamics in carbon fluxes/stocks. Fourth, a better understanding of the sources of uncertainty can provide insight on future improvement of ecosystem approaches and input data streams. Finally, better quantification of the uncertainty in C flux/stock estimates is essential for sound climate and decision-making. Estimates of C fluxes and stocks based on remote sensing could have significant
uncertainties, while quantifying and reducing these uncertainties still remain a grand challenge. Future efforts are needed to account for various sources of uncertainty and thereby to quantify the full uncertainty in C flux and stock estimates. Meanwhile, it is equally important to reduce the uncertainty in the estimates of C fluxes and/or stocks by using remotely sensed data with higher quality and finer resolution and better approaches.

8.4. Long-term trends in carbon fluxes and stocks

Recent decades have witnessed dramatic changes in the Earth’s climate, including a dramatic rise in air temperature, elevated atmospheric CO₂, enhanced nitrogen (N) deposition, and increasing drought frequency and severity (IPCC, 2013). Rapid changes in land cover/land use, including deforestation, afforestation, and urbanization, have also occurred. These changes have substantially altered ecosystem function and processes. For example, there is compelling evidence that many parts of the northern middle and high latitudes have been exhibiting “greening” trends since the early 1980s (Zhou et al., 2001; Xiao and Moody, 2005; Saleska et al., 2016). Evidence of the greening is mainly from the NDVI record derived from AVHRR on board NOAA’s polar-orbiting satellites. The satellite-derived greening signal has been widely interpreted as evidence that ecosystem productivity and net C uptake have been increasing in many parts of the Earth’s land surface. Despite these efforts, a more recent study based on long-term satellite and FLUXNET records found that there were no trends in spring and autumn phenology in the northern hemisphere during the warming hiatus (Wang et al., 2019). Meanwhile, long-term drying (Jiang et al., 2019) and institutional and socioeconomic changes (Zhou et al., 2019) could reduce vegetation productivity and led to “browning” trends. More studies are needed to reveal the long-term trends in carbon fluxes. Meanwhile, a mechanistic understanding of the observed trends is also needed. Satellite observations have also been used to assess the long-term trends in terrestrial biomass (Liu et al., 2015). Inter-calibration among different sensors and bias correction for orbital drift and sensor degradation are critical for long-term analyses in remote sensing data. Inter-calibration among sensors and bias correction are essential for ensuring a high-quality, long-term GIMMS3g NDVI record (Pinzon and Tucker, 2014). The radiometric degradation of MetOp-A GOME-2 over its lifetime has led to declining SIF (Joiner et al., 2016), which has hindered long-term analyses of SIF. The lengthening of the satellite records and the addition of new satellite observations will further extend our capabilities to examine long-term trends in ecosystem C fluxes and/or stocks and their responses and feedbacks to the climate.

8.5. Geospatial processing platforms facilitating remote sensing of the terrestrial carbon cycle

Geospatial processing platforms that provide high performance computing and massive storage capacity are anticipated to play an important role in remote sensing of the terrestrial C cycle in the future. Google Earth Engine is perhaps the most advanced cloud-based geospatial processing platform in the world that is currently available to the remote sensing research community and the public (Gorelick et al., 2017). This platform allows the users to perform highly-interactive algorithm development and develop data products at the global scale. It makes a tremendous amount of widely-used data (e.g., Landsat, MODIS) available so that the users do not need to download or store these data. Downloading satellite data for multiple years for the globe could be a formidable task to an individual scientist for the medium resolution (e.g., 1 km), not to mention finer spatial resolution (e.g., 30 m). With the massive computing and storage capabilities, various built-in functions, and tremendous amount of remote sensing and ancillary (e.g., climate) data, Google Earth Engine and potentially other geospatial processing platforms are anticipated to greatly facilitate planetary-scale remote sensing of the terrestrial C cycle.

8.6. Synergy and integration of remote sensing data in carbon cycle studies

Remotely sensed data from different platforms/sensors have been synergistically used. For example, the VIs from the AVHRR and MODIS have been merged to generate the Vegetation Index and Phenology product (Didan, 2014). OCO-2 SIF soundings and MODIS data were blended to develop global, gridded SIF estimates for the period from 2000 to present (e.g., GOSIP) (Li and Xiao, 2019). The lidar-radar synergies improved the accuracy in forest biomass estimates (Hyde et al., 2007; Sun et al., 2011), and the synergy of Landsat 8/OLI and IceSat-2 improved the estimation of shrub/herbaceous biomass (Glenn et al., 2016). Synergies of different remote sensing data will receive growing attention in future C cycle studies. For example, the synergies of VIs and SIF are likely to improve the estimation of C fluxes. The synergistic use of lidar, radar, and passive optical remote sensing data is expected to be more widely used for biomass estimation, particularly at regional to global scales. The synergy and integration of different remote sensing data and methods have the potential to quantify the different C flux components and C stocks and therefore to assess the entire terrestrial C cycle at regional to global scales. For example, VIs, SIF, LUE models, data-driven methods, and atmospheric inversions can be used to estimate C fluxes; biophysical variables and vegetation properties (e.g., LAI, FAPAR, canopy N content) derived from multispectral and hyperspectral imagery can be assimilated to process-based models for simulating C fluxes and/or stocks; lidar, SAR, and the synergy between lidar/SAR and passive optical remote sensing data (e.g., Landsat, Sentinel, MODIS) can be used to quantify biomass C stocks; the impacts of disturbance on the C cycle can also be quantified using remote sensing data. The synergistic use and integration of various remote sensing data and methods can potentially provide a holistic picture of the terrestrial C cycle.

Acknowledgements

This study was financially supported by the National Aeronautics and Space Administration (NASA) (the Carbon Cycle Science Program: NNX14AJ18G; the Climate Indicators and Data Products for Future National Climate Assessments: NNX16AG61G; the Science of Terra and Aqua: NNX14AI70G) and National Science Foundation (NSF) (MacroSystems Biology: EF-1638688). The lead author (J. Xiao) would like to thank Dr. David Schimel for helpful discussion. We thank Dr. Xufeng Wang for processing the GIMMS3g NDVI and MODIS EVI data and Dr. Yibo Liu for providing BEPS GPP data. We thank Dr. Steve Running and the two anonymous reviewers for their constructive and insightful comments on the manuscript.

Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>Advanced Baseline Imager</td>
</tr>
<tr>
<td>ACGS</td>
<td>Atmospheric Carbon Dioxide Grating Spectrometer</td>
</tr>
<tr>
<td>AGB</td>
<td>aboveground biomass</td>
</tr>
<tr>
<td>AHI</td>
<td>Advanced Himawari Imager</td>
</tr>
<tr>
<td>AIRS</td>
<td>Atmospheric Infrared Sounder</td>
</tr>
<tr>
<td>ALS</td>
<td>Airborne Laser Scanners</td>
</tr>
<tr>
<td>AMSR-E</td>
<td>Advanced Microwave Scanning Radiometer for EOS</td>
</tr>
<tr>
<td>ANPP</td>
<td>aboveground net primary production (NPP)</td>
</tr>
<tr>
<td>AOP</td>
<td>Airborne Observation Platform</td>
</tr>
<tr>
<td>APAR</td>
<td>absorbed photosynthetically active radiation</td>
</tr>
<tr>
<td>AR</td>
<td>autotrophic respiration</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASTER</td>
<td>Advanced Spaceborne Thermal Emission and Reflection Radiometer</td>
</tr>
<tr>
<td>ATLAS</td>
<td>Advanced Topographic Laser Altimeter System</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>Airborne Visible/Infrared Imaging Spectrometer</td>
</tr>
<tr>
<td>BEAMS</td>
<td>Biosphere model integrating Eco-physiological And</td>
</tr>
</tbody>
</table>
Mechanistic approaches using Satellite data

BEPs Boreal Ecosystems Productivity Simulator

BLD backpack laser scanning

BRDF bidirectional reflectance distribution function

CASA Carnegie Ames Stanford Approach Biosphere model

CHM canopy height model

CLM Community Land Model

CMS Carbon Monitoring System

CO₂ carbon dioxide

CSA Canadian Space Agency

DAIS Digital Airborne Imaging Spectrometer

DBH diameter at breast height

DGVM Dynamic Global Vegetation Model

DRL discrete return lidar

DSM Digital Surface Model

DTM Digital Terrain Model

EC eddy covariance

EC-MOD Eddy Covariance-MODIS

EnMap Environmental Mapping and Analysis Program

EnviSat ENVironment SATellite

EO-1 Earth Observing-1

EOS Earth Observing System

ER ecosystem respiration

ERS European Remote Sensing

ESA European Space Agency

ETM+ Enhanced Thematic Mapper Plus

EVI enhanced vegetation index

EVI-2 two-band EVI

FAPAR fraction of absorbed photosynthetically active radiation

FIA Forest Inventory and Analysis

FLEX Fluorescence Explorer

FOTO Fourier Transform Textural Ordination

GEDI Global Ecosystem Dynamics Investigation

GeoCAB Geostationary Carbon Observatory

GIEMS Global Inventory Monitoring and Modeling System

GLAS Geoscience Laser Altimeter System

GLASS Global LAnd Surface Satellite

GO geometric-optical

GOES Geostationary Operational Environmental Satellites

GOFC-GOLD Global Observation of Forest Cover and Land Dynamics

GOME-2 Global Monitoring Ozone Experiment 2

GOSAT Greenhouse gases Observing SATellite

GPS gross primary production

HIRS-2 High resolution Infrared Radiation Sounder-2

HLS Harmonized Landsat and Sentinel-2

HR heterotrophic respiration

Hyperion hyperspectral imager

HyspIRI Hyperspectral Infrared Imager

ICESat Ice, Cloud, and land Elevation Satellite

InSAR SAR interferometry

InTEC Integrated Terrestrial Ecosystem C-budget model

ISS International Space Station

JAXA Japan Aerospace Exploration Agency

JERS-1 Japanese Earth Resources Satellite 1

JPSS-1 First Joint Polar Satellite System

LAI leaf area index

lidar light detection and ranging

LST land surface temperature

LUE light use efficiency

LVIS Laser Vegetation Imaging Sensor

MABEL Multiple Altimeter Beam Experimental Lidar

MIR middle infrared

MLS mobile laser scanning

MODIS Moderate Resolution Imaging Spectroradiometer

MSI Multispectral Imager

MTBS Monitoring Trends in Burn Severity

MTCI MERIS total chlorophyll index

NASA National Aeronautics and Space Administration

NBP net biome production

NDVI normalized difference vegetation index

NDWI normalized difference water index

NEE net ecosystem exchange

NEON National Ecological Observatory Network

NEP net ecosystem production

NIR near-infrared

NISAR NASA-ISRO SAR Mission

NOAA National Oceanic and Atmospheric Administration

NPP net primary production

OCO-2 Orbiting Carbon Observatory-2

OCO-3 Orbiting Carbon Observatory-3

OLI Operational Land Imager

ORCHIDEE Organizing Carbon and Hydrology in Dynamics Ecosystems model

PALSAR Phased Array type L-band Synthetic Aperture Radar

PAR photosynthetically active radiation

PCA principal component analysis

PolInSAR Polarimetric SAR interferometry

PRISMA Prototype Research Instruments and Space Mission technology Advancement

PVI perpendicular vegetation index

RAR real aperture radar

RED+D reducing emissions from deforestation and forest degradation

RMSE root mean squared error

RT radiative transfer

SAR synthetic aperture radar

SCIAMACHY Scanning Imaging Absorption spectrometer for Atmospheric Cartography

SCOPE Soil Canopy Observation, Photochemistry and Energy fluxes

SCRORPAN soils and/or soil properties, climate and/or climate properties, organisms like flora and fauna and human activities, relief settings, parent material, age, and spatial coordinate n

SeaSat Seafaring Satellite

SiB2 Simple Biosphere Model 2

SIF solar-induced chlorophyll fluorescence

SIR-C/X-SAR Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar

SLICER Scanning LiDAR Imager of Canopies by Echo Recovery

SMA spectral mixture analysis

SMAP soil moisture active passive mission

SOC soil carbon

SPOT Satellite Pour l’Observation de la Terre

SR simple ratio

STFs SpectroTransfer Functions

SWIR shortwave infrared

TanSat Chinese Carbon Dioxide Observation Satellite

TANSO-FTS Carbon Observation-Fourier Transform Spectrometer

TC Tasseled cap transformation

TC-GVI Tasseled cap green vegetation index

TEMPO Tropospheric Emissions: Monitoring of Pollution

TES Tropospheric Emission Spectrometer

TIR thermal infrared

TIRS-2 Thermal Infrared Sensor 2

TLS terrestrial laser scanning

TM thematic mapper

TomoSAR tomographic SAR

TROPO TROPOspheric Monitoring Instrument

UAV unmanned aerial vehicles

USDA U.S. Department of Agriculture

USGS U.S. Geological Survey

VI vegetation index

VIIRS visible infrared imaging radiometer suite

VNIR/SWIR visible near infrared and short wave infrared
WDRVI wide dynamic range vegetation index

References

